首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
物理学   50篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
排序方式: 共有50条查询结果,搜索用时 187 毫秒
1.
The "overshoot" effect and sensory hearing impairment   总被引:1,自引:0,他引:1  
The threshold for the detection of a brief tone masked by a longer-duration noise burst is higher when the tone is presented shortly after the onset of the noise than at longer delay times. This finding has been termed the "overshoot" effect [E. Zwicker, J. Acoust. Soc. Am. 37, 653-663 (1965)]. The present letter compared the size of the effect in the better and more impaired ear of six subjects with high-frequency unilateral or asymmetric hearing losses of sensory origin. Thresholds were measured for 5-ms 4-kHz tones presented 10, 200, and 390 ms after the onset of a 400-ms, 2- to 8-kHz noise burst. The better ear of each subject was tested using two noise levels, one equal in sound-pressure level and one equal in sensation level to that used for the impaired ear. Thresholds for all subjects and all ears decreased monotonically with increasing delay time, with the size of the effect typically 5 dB. Thus a small overshoot effect was observed regardless of hearing impairment.  相似文献   
2.
The effect on modulation detection interference (MDI) of timing of gating of the modulation of target and interferer, with synchronously gated carriers, was investigated in three experiments. In a two-interval, two-alternative forced choice adaptive procedure, listeners had to detect 15 Hz sinusoidal amplitude modulation (AM) or frequency modulation (FM) imposed for 200 ms in the temporal center of a 600 ms target sinusoidal carrier. In the first experiment, 15 Hz sinusoidal FM was imposed in phase on both target and interferer carriers. Thresholds were lower for nonoverlapping than for synchronous modulation of target and interferer, but MDI still occurred for the former. Thresholds were significantly higher when the modulators were gated synchronously than when the interferer modulator was gated on before and off after that of the target. This contrasts with the findings of Oxenham and Dau [J. Acoust. Soc. Am. 110, 402-408 (2001)], who reported no effect of modulation asynchrony on AM detection thresholds, using a narrowband noise modulator. Using FM, experiment 2 showed that for temporally overlapping modulation of target and interferer, modulator asynchrony had no significant effect when the interferer was modulated by a narrowband noise. Experiment 3 showed that, for AM, synchronous gating of modulation of the target and interferer produced lower thresholds than asynchronous gating, especially for sinusoidal modulation of the interferer. Results are discussed in terms of specific cues available for periodic modulation, and differences between perceptual grouping on the basis of common AM and FM.  相似文献   
3.
Ciocca and Darwin [V. Ciocca and C. J. Darwin, J. Acoust. Soc. Am. 105, 2421-2430 (1999)] reported that the shift in residue pitch caused by mistuning a single harmonic (the fourth out of the first 12) was the same when the mistuned harmonic was presented after the remainder of the complex as when it was simultaneous, even though subjects were asked to ignore the pure-tone percept. The present study tried to replicate this result, and investigated the role of the presence of the nominally mistuned harmonic in the matching sound. Subjects adjusted a "matching" sound so that its pitch equaled that of a subsequent 90-ms complex tone (12 harmonics of a 155-Hz F0), whose mistuned (+/-3%) third harmonic was presented either simultaneously with or after the remaining harmonics. In experiment 1, the matching sound was a harmonic complex whose third harmonic was either present or absent. In experiments 2A and 2B, the target and matching sound had nonoverlapping spectra. Pitch shifts were reduced both when the mistuned component was nonsimultaneous, and when the third harmonic was absent in the matching sound. The results indicate a shorter than originally estimated time window for obligatory integration of nonsimultaneous components into a virtual pitch.  相似文献   
4.
Experiment 1 measured pure-tone frequency difference limens (DLs) at 1 and 4 kHz. The stimuli had two steady-state portions, which differed in frequency for the target. These portions were separated by a middle section of varying length, which consisted of a silent gap, a frequency glide, or a noise burst (conditions: gap, glide, and noise, respectively). The noise burst created an illusion of the tone continuing through the gap. In the first condition, the stimuli had an overall duration of 500 ms. In the second condition, stimuli had a fixed 50-ms middle section, and the overall duration was varied. DLs were lower for the glide than for the gap condition, consistent with the idea that the auditory system contains a mechanism specific for the detection of dynamic changes. DLs were generally lower for the noise than for the gap condition, suggesting that this mechanism extracts information from an illusory glide. In a second experiment, pure-tone frequency direction-discrimination thresholds were measured using similar stimuli as for the first experiment. For this task, the type of the middle section hardly affected the thresholds, suggesting that the frequency-change detection mechanism does not facilitate the identification of the direction of frequency changes.  相似文献   
5.
Auditory processing of frequency modulation (FM) was explored. In experiment 1, detection of a tau-radians modulator phase shift deteriorated as modulation rate increased from 2.5 to 20 Hz, for 1- and 6-kHz carriers. In experiment 2, listeners discriminated between two 1-kHz carriers, where, mid-way through, the 10-Hz frequency modulator had either a phase shift or increased in depth by deltaD% for half a modulator period. Discrimination was poorer for deltaD = 4% than for smaller or larger increases. These results are consistent with instantaneous frequency being smoothed by a time window with a total duration of about 110 ms. In experiment 3, the central 200-ms of a 1-s 1-kHz carrier modulated at 5 Hz was replaced by noise, or by a faster FM applied to a more intense 1-kHz carrier. Listeners heard the 5-Hz FM continue at the same depth throughout the stimulus. Experiments 4 and 5 showed that, after an FM tone had been interrupted by a 200-ms noise, listeners were insensitive to the phase at which the FM resumed. It is argued that the auditory system explicitly encodes the presence, and possibly the rate and depth, of FM in a way that does not preserve information on FM phase.  相似文献   
6.
The pitch of stimuli was studied under conditions where place-of-excitation was held constant, and where pitch was therefore derived from "purely temporal" cues. In experiment 1, the acoustical and electrical pulse trains consisted of pulses whose amplitudes alternated between a high and a low value, and whose interpulse intervals alternated between 4 and 6 ms. The attenuated pulses occurred after the 4-ms intervals in condition A, and after the 6-ms intervals in condition B. For both normal-hearing subjects and cochlear implantees, the period of an isochronous pulse train equal in pitch to this "4-6" stimulus increased from near 6 ms at the smallest modulation depth to nearly 10 ms at the largest depth. Additionally, the modulated pulse trains in condition A were perceived as being lower in pitch than those in condition B. Data are interpreted in terms of increased refractoriness in condition A, where the larger pulses are more closely followed by the smaller ones than in condition B. Consistent with this conclusion, the A-B difference was reduced at longer interpulse intervals. These findings provide a measure of supra-threshold effects of refractoriness on pitch perception, and increase our understanding of coding of temporal information in cochlear implant speech processing schemes.  相似文献   
7.
Speech recognition in noise improves with combined acoustic and electric stimulation compared to electric stimulation alone [Kong et al., J. Acoust. Soc. Am. 117, 1351-1361 (2005)]. Here the contribution of fundamental frequency (F0) and low-frequency phonetic cues to speech recognition in combined hearing was investigated. Normal-hearing listeners heard vocoded speech in one ear and low-pass (LP) filtered speech in the other. Three listening conditions (vocode-alone, LP-alone, combined) were investigated. Target speech (average F0=120 Hz) was mixed with a time-reversed masker (average F0=172 Hz) at three signal-to-noise ratios (SNRs). LP speech aided performance at all SNRs. Low-frequency phonetic cues were then removed by replacing the LP speech with a LP equal-amplitude harmonic complex, frequency and amplitude modulated by the F0 and temporal envelope of voiced segments of the target. The combined hearing advantage disappeared at 10 and 15 dB SNR, but persisted at 5 dB SNR. A similar finding occurred when, additionally, F0 contour cues were removed. These results are consistent with a role for low-frequency phonetic cues, but not with a combination of F0 information between the two ears. The enhanced performance at 5 dB SNR with F0 contour cues absent suggests that voicing or glimpsing cues may be responsible for the combined hearing benefit.  相似文献   
8.
Three experiments studied the effect of pulse rate on temporal pitch perception by cochlear implant users. Experiment 1 measured rate discrimination for pulse trains presented in bipolar mode to either an apical, middle, or basal electrode and for standard rates of 100 and 200 pps. In each block of trials the signals could have a level of -0.35, 0, or +0.35 dB re the standard, and performance for each signal level was recorded separately. Signal level affected performance for just over half of the combinations of subject, electrode, and standard rate studied. Performance was usually, but not always, better at the higher signal level. Experiment 2 showed that, for a given subject and condition, the direction of the effect was similar in monopolar and bipolar mode. Experiment 3 employed a pitch comparison procedure without feedback, and showed that the signal levels in experiment 1 that produced the best performance for a given subject and condition also led to the signal having a higher pitch. It is concluded that small level differences can have a robust and substantial effect on pitch judgments and argue that these effects are not entirely due to response biases or to co-variation of place-of-excitation with level.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号