首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
化学   26篇
晶体学   5篇
物理学   5篇
  2020年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
Various properties of vitrifying liquids are correlated with the dispersity of the dynamics, the latter reflected in the magnitude of the nonexponentiality parameter, β(K), describing the distribution of relaxation times. These properties include the mean relaxation time, τ(α), the fragility, and the dynamic crossover. The correlations with β(K) are observed in both experimental data and the results from molecular dynamics simulations on Lennard-Jones (LJ) type systems. Another, rather obvious property to correlate with β(K) is the dynamic heterogeneity, which can be quantified from the number of molecules, N(c), dynamically correlated over a time span τ(α). For a given LJ system, N(c) can be rigorously calculated and we find that it does indeed correlate with β(K) over a range of thermodynamic conditions. However, the analysis of experimental data for a broad range of real materials, wherein an approximation is required to obtain N(c), reveals the absence of any relationship between N(c) and β(K) among different materials.  相似文献   
2.
Dielectric spectroscopy as a function of temperature and pressure was used to study the secondary relaxation in poly [(phenyl glycidyl ether)-co-formaldehyde] at hydrostatic pressure up to 600 MPa and at different temperatures between 315 and 243 K. From the analysis of the isothermal measurements, we observe that the activation volume of the secondary relaxation has nonmonotonic temperature dependence with a maximum at the temperature of the glass transition at ambient pressure. An interpretation in terms of mean hole volume dispersion is proposed based on literature data. Moreover, from isobaric data, we studied the effect of pressure on activation entropy and enthalpy of the secondary relaxation evidencing its local nature but also the presence of a certain complexity of the motion, which supports the idea that this process reflects the motion of a large part of the molecule.  相似文献   
3.
We report evidence from broadband dielectric spectroscopy that the dynamics of the primary alpha- and secondary Johari-Goldstein (JG) beta-processes are strongly correlated in different glass-forming systems over a wide temperature T and pressure P range, in contrast with the widespread opinion of statistical independence of these processes. The alpha-beta mutual dependence is quantitatively confirmed by (a) the overall superposition of spectra measured at different T-P combinations but with an invariant alpha-relaxation time; (b) the contemporary scaling of the isothermal-pressure and isobaric-temperature dependences of the alpha-and beta-relaxation times as plotted versus the reduced variable Tg(P)/T where Tg is the glass transition temperature. These novel and model-independent evidences indicate the relevance of the JG relaxation phenomenon in glass transition, often overlooked by most current theories.  相似文献   
4.
Broad-band dielectric measurements for fructose-water mixtures with fructose concentrations between 70.0 and 94.6 wt% were carried out in the frequency range of 2 mHz to 20 GHz in the temperature range of -70 to 45 degrees C. Two relaxation processes, the alpha process at lower frequency and the secondary beta process at higher frequency, were observed. The dielectric relaxation time of the alpha process was 100 s at the glass transition temperature, T(g), determined by differential scanning calorimetry (DSC). The relaxation time and strength of the beta process changed from weaker temperature dependences of below T(g) to a stronger one above T(g). These changes in behaviors of the beta process in fructose-water mixtures upon crossing the T(g) of the mixtures is the same as that found for the secondary process of water in various other aqueous mixtures with hydrogen-bonding molecular liquids, polymers, and nanoporous systems. These results lead to the conclusion that the primary alpha process of fructose-water mixtures results from the cooperative motion of water and fructose molecules, and the secondary beta process is the Johari-Goldstein process of water in the mixture. At temperatures near and above T(g) where both the alpha and the beta processes were observed and their relaxation times, tau(alpha) and tau(beta), were determined in some mixtures, the ratio tau(alpha)/tau(beta) is in accord with that predicted by the coupling model. Fixing tau(alpha) at 100 s, the ratio tau(alpha)/tau(beta) decreases with decreasing concentration of fructose in the mixtures. This trend is also consistent with that expected by the coupling model from the decrease of the intermolecular coupling parameter upon decreasing fructose concentration.  相似文献   
5.
There is a plethora of experimental data on the dynamics of water in mixtures with glycerol, ethylene glycol, ethylene glycol oligomers, poly(ethylene glycol) 400 and 600, propanol, poly(vinyl pyrrolidone), poly(vinyl methylether), and other substances. In spite of the differences in the water contents, the chemical compositions, and the glass transition temperatures Tg of these aqueous mixtures, a faster relaxation originating from the water (called the nu-process) is omnipresent, sharing the following common properties. The relaxation time tau(nu) has Arrhenius temperature dependence at temperatures below Tg of the mixture. The activation energies of tau(nu) all fall within a neighborhood of 50 kJ/mol. At the same temperature where mixtures are all in their glassy states, the values of tau(nu) of several mixtures are comparable. The Arrhenius temperature dependence of tau(nu) does not continue to higher temperatures and instead it crosses over to a stronger temperature dependence at temperatures above Tg. The dielectric relaxation strength of the nu-process, Deltaepsilon(nu)(T), has a stronger temperature dependence above Tg than below, mimicking the change of enthalpy, entropy, and volume when crossing Tg. These general property of the nu-process (except for the magnitude of the activation energy) had been found before in the secondary relaxation of the faster component in several binary nonaqueous mixtures. Other properties of the secondary relaxation in these nonaqueous mixtures have helped to identify it as the Johari-Goldstein (JG) secondary relaxation of the faster component. The similarities in properties lead us to conclude that the nu-processes in water mixtures are the JG secondary relaxations of water. The conclusion is reinforced by the processes behaving similarly to the nu-process found in 6 A thick water layer (two molecular layers) in fully hydrated Na-vermiculite clay, and in water confined in molecular sieves, silica hydrogels, and poly(2-hydroxyethyl methacrylate) hydrogels.  相似文献   
6.
Local segmental relaxation properties of poly(methylmethacrylate) (PMMA) of varying molecular weight are measured by dielectric spectroscopy and analyzed in combination with the equation of state obtained from PVT measurements. Significant variations of glass transition temperature and fragility with molecular weight are observed. In accord with the general properties of glass-forming materials, single molecular weight dependent scaling exponent gamma is sufficient to define the mean segmental relaxation time taualpha and its distribution. This exponent can be connected to the Gruneisen parameter and related thermodynamic quantities, thus demonstrating the interrelationship between dynamics and thermodynamics in PMMA. Changes in the relaxation properties ("dynamic crossover") are observed as a function of both temperature and pressure, with taualpha serving as the control parameter for the crossover. At longer taualpha another change in the dynamics is apparent, associated with a decoupling of the local segmental process from ionic conductivity.  相似文献   
7.
8.
In several current important problems in different areas of soft matter physics, controversy persists in interpreting the molecular dynamics observed by various spectroscopies including dielectric relaxation, light scattering, nuclear magnetic resonance, and neutron scattering. Outstanding examples include: (1) relaxation of water in aqueous mixtures, in molecular sieves and silica-gel nanopores, and in hydration shell of proteins; and (2) dynamics of each component in binary miscible polymer blends, in mixtures of an amorphous polymer with a small molecular glassformer, and in binary mixtures of two small molecular glassformers. We show the applications of calorimetry to these problems have enhanced our understanding of the dynamics and eliminated the controversies.  相似文献   
9.
Broadband dielectric measurements of polypropylene glycol of molecular weight M(w)=400 g / mol (PPG 400) were carried out at ambient pressure over the wide temperature range from 123 to 353 K. Three relaxation processes were observed. Besides the structural alpha relaxation, two secondary relaxations, beta and gamma, were found. The beta process was identified as the true Johari-Goldstein relaxation by using a criterion based on the coupling model prediction. The faster gamma relaxation, well separated from the primary process, undoubtedly exhibits the anomalous behavior near the glass transition temperature (T(g)) which is reflected in the presence of a minimum of the temperature dependence of the gamma-relaxation time. We successfully applied the minimal model [Dyre and Olsen, Phys. Rev. Lett. 91, 155703 (2003)] to describe the entire temperature dependence of the gamma-relaxation time. The asymmetric double-well potential parameters obtained by Dyre and Olsen for the secondary relaxation of tripropylene glycol at ambient pressure were modified by fitting to the minimal model at lower temperatures. Moreover, we showed that the effect of the molecular weight of polypropylene glycol on the minimal model parameters is significantly larger than that of the high pressure. Such results can be explained by the smaller degree of hydrogen bonds formed by longer chain molecules of PPG at ambient pressure than that created by shorter chains of PPG at high pressure.  相似文献   
10.
A molecular cluster containing a coplanar ring of iron(III) ions with spin 5/2 was investigated by Mössbauer spectroscopy. The iron spins are antiferromagnetically coupled so that the ground state has total spin S=0. Spectra in the absence of an applied magnetic field consisted of a quadrupolar doublet, the linewidth of which monotonically increased with the temperature. A quadrupolar splitting of about 0.35 mm/s was found. Calculations of the ironorbital electronic populations were carried out and the quadrupolar splitting was estimated. Its value was in agreement with the experimental one. In addition, the trend of the linewidth was explained in terms of isotropic spin fluctuations. Spectra in the presence of a 4.5 T longitudinal magnetic field were also collected. The hyperfine field was obtained from their fitting. Differences with respect to the hyperfine field obtained from susceptibility data were also interpreted in terms of spin fluctuations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号