首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
化学   39篇
晶体学   1篇
数学   1篇
物理学   5篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
A number of biphenyl, terphenyl analogues and ethynes which contain a pyrazine ring have been made and their liquid crystal transition temperatures, together with examples of birefringence measurements, are reported. All the 2,5-disubstituted pyrazine systems are liquid crystalline showing high birefringence values for the biphenyl and terphenyl analogues, whereas the 1,5-disubstituted systems are not liquid crystalline. The pyrazine ethyne systems exhibit very high birefringence values. X-ray diffraction has been used to identify the liquid crystal phases of 2-n-nonyloxy-5-(4'-propylbiphenyl-4-yl)pyrazine.  相似文献   
2.
The novel NAD+-linked opine dehydrogenase from a soil isolate Arthrobacter sp. strain 1C belongs to an enzyme superfamily whose members exhibit quite diverse substrate specificites. Crystals of this opine dehydrogenase, obtained in the presence or absence of co-factor and substrates, have been shown to diffract to beyond 1.8 ? resolution. X-ray precession photographs have established that the crystals belong to space group P21212, with cell parameters a = 104.9, b = 80.0, c = 45.5 ? and a single subunit in the asymmetric unit. The elucidation of the three-dimensional structure of this enzyme will provide a structural framework for this novel class of dehydrogenases to enable a comparison to be made with other enzyme families and also as the basis for mutagenesis experiments directed towards the production of natural and synthetic opine-type compounds containing two chiral centres.  相似文献   
3.
4.
Optically switchable liquid crystal photonic structures   总被引:1,自引:0,他引:1  
Photo-optic materials offer the possibility of light controlled photonic devices, intelligent and environmentally adaptive optical materials. One strategy for creating these materials is the combination of structure formation through holographic photopolymerization and the variable optical properties of liquid crystals. Holographically patterned, polymer stabilized liquid crystals (HPSLCs) have proven to be useful optical materials. By incorporating photo-optic, azobenzene-derived liquid crystal blends into such material systems, we have generated practical photoresponsive optical materials.  相似文献   
5.
6.
Prior examinations have reported that polymer stabilisation of azobenzene-based cholesteric liquid crystal (CLC) mixtures can reduce the time necessary for complete colour restoration in the dark from three days to as few as five minutes. This work extends upon these prior examinations by exploring and elucidating the role of crosslinker concentration and monomer polarity on the colour restoration of a representative CLC mixture composed of a high HTP bis(azo) binapthanyl chiral dopant (QL76) mixed into the cyanobiphenyl nematic liquid crystal host MDA-00-1444. The impact of these variables was unexpectedly convoluted. In all the formulations examined here, polymer stabilisation dramatically reduces the time for complete colour restoration of the starting reflection notch. In mixtures based on nonpolar liquid crystal monomers, increasing the crosslinker concentration reduces the time necessary for complete colour restoration. However, the dependence on crosslinker concentration reverses in mixtures composed from polar liquid crystal monomers in which increasing the crosslinker concentration serves to increase the time necessary for complete colour restoration.  相似文献   
7.
Visible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor. The induced helical superstructure containing the molecular switch with terminal iodo atoms exhibits visible-light-driven reversible unwinding, that is, a cholesteric–nematic phase transition. Interestingly, the molecular switch with terminal bromo atoms confers reversible handedness inversion to the helical superstructure upon irradiation with visible light of different wavelengths. This visible-light-driven, reversible handedness inversion, enabled by a halogen bond donor molecular switch, is unprecedented.  相似文献   
8.
Constructing and tuning self‐organized three‐dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self‐organized, phototunable 3D photonic superstructure from monodisperse droplets of one‐dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid‐crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions.  相似文献   
9.
A structured polymer was synthesized by surface initiated photopolymerization in the presence of a cholesteric liquid crystal (CLC). The templated helical polymer (traversing 2/3 the cell thickness) was backfilled with an opposite handedness, photoresponsive CLC mixture yielding a photo-induced, large contrast, hyper-reflective (R > 99%) CLC film.  相似文献   
10.
Droplet deformation and alignment are achieved in holographic polymer-dispersed liquid-crystal reflection gratings by applying an in situ shear during recording. High diffraction efficiency (99%) is obtained for light polarized parallel to the shear, with nearly zero efficiency for perpendicular polarization, and no increase of incoherent scattering. Permanent polarization dependence is related to stress-induced morphology changes of liquid-crystal droplets that are frozen by polymerization. The system is studied by electron microscopy and modeled by anisotropic coupled-wave and scattering theory. The morphology is consistent with the theory of small deformations of liquid droplets in fluid flow. Diffraction efficiency measurements are in agreement with theory incorporating this morphology as well as concomitant orientation and alignment of liquid-crystal molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号