全文获取类型
收费全文 | 59篇 |
免费 | 1篇 |
专业分类
化学 | 11篇 |
晶体学 | 2篇 |
力学 | 2篇 |
数学 | 36篇 |
物理学 | 9篇 |
出版年
2020年 | 1篇 |
2016年 | 2篇 |
2014年 | 2篇 |
2013年 | 2篇 |
2010年 | 1篇 |
2008年 | 2篇 |
2007年 | 2篇 |
2004年 | 2篇 |
2003年 | 1篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1996年 | 3篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 6篇 |
1980年 | 8篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有60条查询结果,搜索用时 0 毫秒
1.
2.
3.
Somatic embryos were used to develop a cryopreservation protocol for Macropidia fuliginosa, a commercially-important species endemic to the south-west of Western Australia. Somatic embryos were allowed to develop from embryogenic callus for three weeks on an kinetin medium prior to processing. These were transferred and cultured on a agar solidified basal medium supplemented with 0 to 0.6 M sorbitol for 2 d prior to incubation in Plant Vitrification Solution Two (PVS2). Following this, embryos were then washed in 1 M sucrose solution (treated controls) or cooled in liquid nitrogen (LN). Cooled embryos were then warmed and washed in sucrose solution. Highest survival for cooled treatments (67.3%) was achieved by preculture with 0.4 M sorbitol, then incubation in PVS2. Further experimentation varying pre-culture duration (2 or 3 d) and incubation on either glycerol (0.8 M) or sorbitol (0.4 M) indicated that very high survival (90.6%) of embryos was achievable by adopting a 2 d preculture period on 0.8 M glycerol. The phenotype and growth rates of plants obtained using this protocol were similar to those of parent plants. This optimised procedure was then applied to tissue culture-derived shoot apices of the same clone also resulting in a high survival rate (84.4%). 相似文献
4.
5.
Neverov AA Liu CT Bunn SE Edwards D White CJ Melnychuk SA Brown RS 《Journal of the American Chemical Society》2008,130(20):6639-6649
The di-Zn(II) complex of 1,3-bis[ N1, N1'-(1,5,9-triazacyclododecyl)]propane with an associated methoxide ( 3:Zn(II) 2: (-)OCH 3) was prepared and its catalysis of the methanolysis of a series of fourteen methyl aryl phosphate diesters ( 6) was studied at s (s)pH 9.8 in methanol at 25.0 +/- 0.1 degrees C. Plots of k obs vs [ 3:Zn(II) 2: (-)OCH 3] free for all members of 6 show saturation behavior from which K(M) and kcat (max) were determined. The second order rate constants for the catalyzed reactions (kcat (max)/K(M)) for each substrate are larger than the corresponding methoxide catalyzed reaction (k 2 (-OMe)) by 1.4 x 10(8) to 3 x 10 (9)-fold. The values of k cat (max) for all members of 6 are between 4 x 10(11) and 3 x 10(13) times larger than the solution reaction at s (s)pH 9.8, with the largest accelerations being given for substrates where the departing aryloxy unit contains ortho-NO 2 or C(O)OCH 3 groups. Based on the linear Br?nsted plots of k cat (max) vs s (s)pKa of the phenol, beta lg values of -0.57 and -0.34 are determined respectively for the catalyzed methanolysis of "regular" substrates that do not contain the ortho-NO 2 or C(O)OCH 3 groups, and those substrates that do. The data are consistent with a two step mechanism for the catalyzed reaction with rate limiting formation of a catalyst-coordinated phosphorane intermediate, followed by fast loss of the aryloxy leaving group. A detailed energetics calculation indicates that the catalyst binds the transition state comprising [CH 3O (-): 6], giving a hypothetical [ 3:Zn(II) 2:CH 3O (-): 6] complex, by -21.4 to -24.5 kcal/mol, with the strongest binding being for those substrates having the ortho-NO 2 or C(O)OCH 3 groups. 相似文献
6.
7.
8.
9.
1.IntrodnctionWegiveaproofofthestrongconvergenceinofthesolutionoftheparabolicapproximationtowardstheentropicsolutiontothescalarconservationlawwhereuo(RN),udenotessomeapproximationofuosuchthatandthefluxfsatisfiesTheconvergenceoftheapproximatesolutions... 相似文献
10.
Bunn SE Liu CT Lu ZL Neverov AA Brown RS 《Journal of the American Chemical Society》2007,129(51):16238-16248
A methoxide-bridged dinuclear Zn(II) complex of 1,3-[N,N'-bis(1,5,9-triazacyclododecane)]propane (1-Zn(II)2:(-OCH3)) was prepared, and its catalysis of the cyclization of a series of 2-hydroxypropyl aryl phosphates (4a-g) was investigated in methanol at pH 9.8, T = 25degreesC by stopped-flow spectrophotometry. An X-ray diffraction structure of the hydroxide analogue of 1-Zn(II)2:(-OCH3), namely 1-Zn(II)2:(-OH), reveals that each of the Zn(II) ions is coordinated by the three N's of the triazacyclododecane units and a bridging hydroxide. The cyclizations of substrates 4a-g reveal a progressive change in the observed kinetics from Michaelis-Menten saturation kinetics for the poorer substrates (4-OCH3 (4g); 4-H (4f); 3-OCH3 (4e); 4-Cl (4d); 3-NO2, (4c)) to second-order kinetics (linear in 1-Zn(II)2:(-OCH3)) for the better substrates (4-NO2,3-CH3 (4b); 4-NO2, (4a)). The data are analyzed in terms of a multistep process whereby a first formed complex rearranges to a reactive complex with a doubly activated phosphate coordinated to both metal ions. The kinetic behavior of the series is analyzed in terms of change in rate-limiting step for the catalyzed reaction whereby the rate-limiting step for the poorer substrates (4g-c) is the chemical step of cyclization of the substrate, while for the better substrates (4b,a) the rate-limiting step is binding. The catalysis of the cyclization of these substrates is extremely efficient. The kcat/KM values for the catalyzed reactions range from 2.75 x 10(5) to 2.3 x 10(4) M-1 s-1, providing an acceleration of 1 x 10(8) to 4 x 10(9) relative to the methoxide reaction (k2OCH3, which ranges from 2.6 x 10(-3) to 5.9 x 10(-6) M-1 s-1 for 4a-g). At a pH of 9.8 where the catalyst is maximally active, the acceleration for the substrates ranges from (1 - 4) x 10(12) relative to the background reaction at the same pH. Detailed energetics calculations show that the transition state for the catalyzed reaction comprising 1-Zn(II)2, methoxide, and 4 is stabilized by about -21 to -23 kcal/mol relative to the transition state for the methoxide reaction. The pronounced catalytic activity is attributed to a synergism between a positively charged catalyst that has high affinity for the substrate and for the transition state for cyclization, and a medium effect involving a reduced polarity/dielectric constant that complements a reaction where an oppositely charged reactant and catalyst experience charge dispersal in the transition state. 相似文献