首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   1篇
数学   2篇
物理学   10篇
  2017年   1篇
  2012年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
In many generic combustion models, one finds that a combustionwave will develop with a specific wave speed. However, thereare possible initial temperature profiles which do not evolveinto such waves, but rather die out to the ambient temperature.There can exist, in some models, a clear distinction betweenthose initial conditions that do evolve into combustion wavesand those that do not; this is sometimes referred to as thewatershed initial condition. When fuel consumption is consideredto be negligible, analytical methods can be used to obtain theexact watershed. In this paper, we consider the problem of determiningpseudo-watersheds and ascertaining the relationship betweenthese pseudo-watersheds and the exact watersheds. In the processa novel weight-function approach for infinite spatial domainsis developed.  相似文献   
2.
3.
Three examples of thermally polarized gas NMR performed at New Mexico Resonance are presented to demonstrate its unique advantages in porous media studies. 1) In-vivo animal lung imaging by Kuethe et al., in which useful quality 3D images of rat lungs were obtained in 30 min. It is conjectured that comparable human lung images would take much less time to make, possibly by the ratio of body weights, a factor of several hundred. 2) The success of the lung imaging suggested other porous media as candidates for thermally polarized gas NMR. Caprihan and coworkers obtained excellent images from partially sintered ceramics and Vycor glass. Since then, Beyea has developed the technique of spatially resolved BET curves for ceramics and other nanoporous solids. In this way, surface area, pore size, and porosity, averaged over an image voxel, can be spatially resolved. This greatly aids in the characterization of such materials, especially with regards to spatial heterogeneities. 3) Finally, we describe Codd's propagator experiments on propane gas flowing through a packed bed of 300 microm beads. In order to increase signal-to-noise ratio, the flowing gas was pressurized to 170 kPa. Excellent quality propagators showing the discrete nature of the bead pack were obtained. This type of information is not available in comparable liquid studies because most spins will not diffuse far enough to sample the walls in the time available.  相似文献   
4.
Single point measurements of magnetic field gradient waveform   总被引:1,自引:0,他引:1  
Pulsed magnetic field gradients are fundamental to spatial encoding and diffusion weighting in magnetic resonance. The ideal pulsed magnetic field gradient should have negligible rise and fall times, however, there are physical limits to how fast the magnetic field gradient may change with time. Finite gradient switching times, and transient, secondary, induced magnetic field gradients (eddy currents) alter the ideal gradient waveform and may introduce a variety of undesirable image artifacts. We have developed a new method to measure the complete magnetic field gradient waveform. The measurement employs a heavily doped test sample with short MR relaxation times (T(1), T(2), and T(2)(*)<100 micros) and a series of closely spaced broadband radiofrequency excitations, combined with single point data acquisition. This technique, a measure of evolving signal phase, directly determines the magnetic field gradient waveform experienced by the test sample. The measurement is sensitive to low level transient magnetic fields produced by eddy currents and other short and long time constant non-ideal gradient waveform behaviors. Data analysis is particularly facile permitting a very ready experimental check of gradient performance.  相似文献   
5.
We report herein the synthesis of cytotoxic cyanobactin, Wewakazole B through an efficient solution-phase approach. The key steps of the synthesis are the macrocyclic lactamization of linear dodecapeptide and construction of two hexapeptides with three different substituted oxazole rings.  相似文献   
6.

Background  

It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI.  相似文献   
7.
Susceptibility field gradients (SFGs) cause problems for functional magnetic resonance imaging (fMRI) in regions like the orbital frontal lobes, leading to signal loss and image artifacts (signal displacement and "pile-up"). Pulse sequences with spiral-in k-space trajectories are often used when acquiring fMRI in SFG regions such as inferior/medial temporal cortex because it is believed that they have improved signal recovery and decreased signal displacement properties. Previously postulated theories explain differing reasons why spiral-in appears to perform better than spiral-out; however it is clear that multiple mechanisms are occurring in parallel. This study explores differences in spiral-in and spiral-out images using human and phantom empirical data, as well as simulations consistent with the phantom model. Using image simulations, the displacement of signal was characterized using point spread functions (PSFs) and target maps, the latter of which are conceptually inverse PSFs describing which spatial locations contribute signal to a particular voxel. The magnitude of both PSFs and target maps was found to be identical for spiral-out and spiral-in acquisitions, with signal in target maps being displaced from distant regions in both cases. However, differences in the phase of the signal displacement patterns that consequently lead to changes in the intervoxel phase coherence were found to be a significant mechanism explaining differences between the spiral sequences. The results demonstrate that spiral-in trajectories do preserve more total signal in SFG regions than spiral-out; however, spiral-in does not in fact exhibit decreased signal displacement. Given that this signal can be displaced by significant distances, its recovery may not be preferable for all fMRI applications.  相似文献   
8.
A MR microscopy experiment is developed and used to characterize fluid ingress and microstructural transformation in degradable calcium polyphosphate (CPP) bioceramics. High-resolution (49 μm) maps of fluid density and spin–lattice relaxation rate were obtained as a function of time for CPP immersed in phosphate buffered saline. These results demonstrate clear differences in fluid transport rates and solid matrix microstructure in two differing CPP formulations. CPP has been proposed as a potential implantable device for the delivery of pharmaceuticals, and the magnetic resonance imaging (MRI) data are used in conjunction with previously reported bulk elution results to develop a hypothesis explaining microstructural evolution in these materials. This type of non-destructive evaluation of the structure–transport of fluids in CPP is important to improved design of these functionalized biomaterials for long-term, localized delivery of sustained levels of therapeutic agents.  相似文献   
9.
This paper presents the results obtained by nuclear magnetic resonance (NMR) imaging of perfluorinated gases in mesoporuous solids. NMR images of nuclear spin density as a function of gas pressure permits spatially resolved measurements that are analogous to conventional bulk Brunauer-Emmett-Teller adsorption isotherm measurements. The use of NMR imaging allows the nondestructive evaluation of macroscopic spatial variations in the underlying mesoporous structure, for materials such as partially sintered Y-TZP (yttria-stabilized tetragonal-zirconia polycrystal) ceramics. All NMR measurements were performed with octafluorocyclobutane (C4F8) gas, using only the thermal Boltzman nuclear magnetization.  相似文献   
10.
This communication presents the results of T2-weighted nuclear magnetic resonance imaging (MRI) of a water saturated porous volcanic rock using a fast single point imaging technique (turboSPI). Imaging porous materials with heterogeneously distributed mineral products, and air voids, using conventional imaging methods, which introduce T2-weighting by increasing the time between the excitation and refocusing pulses, often results in high diffusive signal losses and susceptibility distortion. T2-weighted images acquired of a water saturated porous rock using turboSPI with an effective echo time of 8.1 ms (actual inter-echo time of 0.9 ms) exhibit significantly decreased diffusive attenuation, compared to analogous images obtained with an inter-echo time of 8.1 ms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号