首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
化学   60篇
力学   16篇
数学   1篇
物理学   27篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
A new method for determining Hamaker constants was examined for materials of interest in integrated circuit manufacture. An ultra-high vacuum atomic force microscope and an atomic force microscope operated in a nitrogen environment were used to measure the interaction forces between metals, dielectrics, and barriers used during the metalization portion of integrated circuit manufacturing. The materials studied included copper, silver, titanium nitride, silicon dioxide, poly(tetrafluoroethylene), and parylene-N. Spheres coated with a material of interest were mounted on AFM cantilevers and brought into contact with substrates of interest. The interaction force was measured as the cantilever approached the substrate but before the two surfaces came into contact, and also when the particle was pulled out of contact with the substrate. The Hamaker constant calculation from the contact measurement is based on an adhesion model that quantifies the contribution of geometrical, morphological and mechanical properties of materials to the measured adhesion force. Hamaker constants determined with this new approach were compared with values found by using the Derjaguin approximation for a sphere to describe the interaction force as the cantilever approaches the surface. Both approaches produced similar values for most of the systems studied, with variations of less than 10%.  相似文献   
2.
Simulation of the Adhesion of Particles to Surfaces   总被引:1,自引:0,他引:1  
The removal of micrometer and submicrometer particles from dielectric and metal films represents a challenge in postchemical mechanical polishing cleaning. Proper modeling of the adhesive force between contaminant particles and these films is needed to develop optimal solutions to postchemical mechanical polishing cleaning. We have previously developed and experimentally validated a model to describe the adhesion between spherical particles and thin films. This simulation expands previous models to characterize the adhesive interaction between asymmetrical particles, characteristic of a polishing slurry, and various films. Our simulation accounts for the contact area between particles and substrates, as well as the morphology of the surfaces. Previous models fail to accurately describe the contact of asymmetrical particles interacting with surfaces. By properly accounting for nonideal and geometry and morphology, the simulation predicts a more accurate adhesive force than predictions based upon an ideal van der Waals model. The simulation is compared to experimental data taken for both semi-ideal particle-substrate systems (polystyrene latex spheres in contact with silicon films) and asymmetrical systems (alumina particles in contact with various films). Copyright 2001 Academic Press.  相似文献   
3.
Hydrophobically modified poly(ethylene oxide), HMPEO, was studied in concentrated salt solutions. The influence of salts was compared to the effect of temperature on poly(ethylene oxide), PEO. As expected, the addition of monovalent cations (Na(+), K(+)) has the same effect as an increase in temperature in agreement with the thermodynamic properties of PEO: a decrease in solubility, micelle size, and viscosity was observed. Moreover, the intensity of neutron scattering peaks (characteristic of the semi-dilute solutions of these associative polymers) increases due to the collapse of PEO coronae in micelles. Very peculiar behavior was observed in the presence of divalent cations (Ca(2+), Mg(2+)): larger micelle aggregates and higher viscosities, relaxation times, and activation energies were observed by dynamic rheology. This behavior is attributed to interactions between divalent cations and oxygen in PEO backbones close to the micelle core, which may reinforce intermicellar bridges.  相似文献   
4.
The elimination or minimization of non-specific protein adsorption from serum is critical for the use of surface plasmon resonance (SPR) sensors for in vitro and in vivo analysis of complex biological solutions. The ultimate goals in this application are to minimize non-specific adsorption of protein and to maximize analyte signal. A reduction of the non-specific protein adsorption from serum of up to 73% compared to carboxymethylated-dextran 500 kDa (CM-dextran) was achieved following a survey of eight biocompatible polymers and 10 molecular weights of CM-dextran. These coatings minimize non-specific adsorption on the sensor while also serving as immobilization matrices for antibody fixation to the probes. Polymers including polysaccharides: CM-dextrans, CM-hyaluronic acid, hyaluronic acid, and alginic acid were investigated. Humic acid, polylactic acid, polyacrylic acid, orthopyridyldisuldfide–polyethyleneglycol–N-hydroxysuccinimide (OPSS–PEG–NHS), and a synthesized polymer; polymethacrylic-acid-co-vinyl-acetate (PMAVA) were also used. The non-specific protein adsorption reduction was measured over a 14 day period at 0 °C for each polymer. Calibration curves using some of these polymers were constructed to show the performance and low detection limit possibilities of these new antibody supports. For many of the polymers, this is the first demonstration of employment as an antibody support for an optical or surface active sensor. CM-dextran is the polymer offering the largest signal for the antigen detection. However, the biocompatible polymers demonstrate a greater stability to non-specific binding in serum. These biocompatible polymers offer different alternatives for CM-dextran.  相似文献   
5.
Diffractive dissociation of nuclei (Be, Al, W) in collisions with 450 GeV/c protons,pApX, has been measured with the HELIOS spectrometer at the CERN Super Proton synchrotron. The dependence of the single-diffraction cross-section on the nuclear massA can be parametrized as SD mb×A 0.35±0.02, showing the peripheral nature of the process. The differential cross-section dSD=(3.8±0.3)mb ×A 0.35±0.02, is exponential with the slope parameter, increasing from 6.2±0.4 (GeV/c)–2 for beryllium to 7.9±0.5 (GeV/c)–2 for tungsten. The slope parameter also increases with increasing massM X of the diffractively produced state. The rapidity, multiplicity, and transverse-momentum distributions of the particles of the diffractively produced stateX show a longitudinal phase-space population and are remarkably insensitive to the nuclear mass. This, together with theA 1/3 dependence of SD, suggests that the dominant process of nuclear diffractive excitation is the dissociation of single nucleons.Deceased  相似文献   
6.
Analyzing surface forces for myriad geometric structures facilitates the design of properties in interacting interfacial systems. Along these lines, we demonstrate a generalized technique that can be utilized to evaluate the orientation dependence of a particle interacting with multiple finite or semi‐infinite objects. Specifically, the surface element integration technique is modified to account for surface elements of a particle not directly adjacent to the object with which it is interacting; this facilitates the analysis of objects with finite shape and with arbitrary orientations. Furthermore, as a technology‐relevant proof‐of‐concept demonstration, the influence of van der Waals (vdW) forces on the performance and reliability of microstructured systems used for the collection of trace particles is reported. The importance of the location of the particle contact with the microstructure and the independence of vdW forces generated by each microstructure is demonstrated using the developed computational approach. Thus, the methodology presented here can ultimately be utilized for a variety of interfacial forces generated by nontrivial systems with heterogeneous properties in order to provide design motifs in a low‐cost, high‐throughput manner.  相似文献   
7.
Thermoelastic stress analysis under nonadiabatic conditions   总被引:1,自引:0,他引:1  
Thermoelastic stress analysis is a full-field stress measurement technique complementary to local techniques like strain gages. Generally, the heat transfer inside the material is neglected with respect to the frequency of the cyclical loading. An adiabaticity criterion is established to assert this simplification as a function of the thermal diffusion length and the spatial stress gradients. Under nonadiabatic conditions, heat diffusion attenuates the spatial temperature gradients, which leads to an underestimation of stress concentrations. Analytical and numerical considerations allow for the quantification of the spatial resolution. Finally, several inverse techniques can restore the thermally attenuated contrasts.  相似文献   
8.
A particle method has been used to simulate the vorticity transport in a two-dimensional flow of an incompressible inviscid fluid. In this method, not only the location and the circulation of the particle are used but also the moments of the internal vorticity. The transport equation for these moments has been derived from the vorticity transport equation. The method has been compared to the usual particle method as well as to Teng's elliptic vortex model. The test case is that of the evolution of two circular patches of vorticity already used by Teng. To cite this article: A. Beaudoin et al., C. R. Mecanique 330 (2002) 51–56  相似文献   
9.
We have measured the beta spectrum of the 0?(120 keV,t 1/2=5.25 μs) state of16N. The response function of our detector has been measured, parameterized and then fitted to known spectral shapes taken under conditions close to those in the actual experiment. Using this response function and subtracting a 56 μs half-life background due to neutron capture in the detector, the measured 0? spectrum compares well with the allowed shape for the 0?→0+ spectrum plus a small contribution from the allowed 0?→1? transition.  相似文献   
10.
Efficient removal of particles from topologically‐complex surfaces is of significant import for a range of applications (e.g., explosive residue removal in security arenas). Here, we synthesize next‐generation polymeric particle removal swabs with tuned structural features to elucidate the influence of the polymer microstructure on the removal of trace particles from surfaces. Specifically, microstructured free‐standing films of the conducting polymer polypyrrole (PPy) were synthesized through template‐assisted electropolymerization techniques. The removal of polystyrene microspheres from representative aluminum surfaces of varying roughness was evaluated as a function of the PPy microstructure. PPy‐based microstructured swabs displayed increased particle trapping properties relative to non‐textured PPy‐based swabs and current commercial swabs. This increased effectiveness occurred from the more intimate particle‐swab contact, leading to increased van der Waals interactions for the microstructured swabs. Therefore, this effort provides critical design rules for the production of microstructured conducting polymer materials for their application toward advanced particle removal technologies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1968–1974  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号