首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   7篇
  国内免费   1篇
化学   124篇
晶体学   11篇
力学   1篇
数学   13篇
物理学   19篇
  2024年   4篇
  2023年   3篇
  2022年   10篇
  2021年   12篇
  2020年   10篇
  2019年   5篇
  2018年   19篇
  2017年   8篇
  2016年   20篇
  2015年   10篇
  2014年   10篇
  2013年   13篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有168条查询结果,搜索用时 187 毫秒
1.
Mupirocin, a polyketide-derived antibiotic from Pseudomonas fluorescens NCIMB10586, is a mixture of pseudomonic acids (PA) that target isoleucyl-tRNA synthase. The mup gene cluster encodes both type I polyketide synthases and monofunctional enzymes that should play a role during the conversion of the product of the polyketide synthase into the active antibiotic (tailoring). By in-frame deletion analysis of selected tailoring open-reading frames we show that mupQ, mupS, mupT, and mupW are essential for mupirocin production, whereas mupO, mupU, mupV, and macpE are essential for production of PA-A but not PA-B. Therefore, PA-B is not simply produced by hydroxylation of PA-A but is either a precursor of PA-A or a shunt product. In the mupW mutant, a new metabolite lacking the tetrahydropyran ring is produced, implicating mupW in oxidation of the 16-methyl group.  相似文献   
2.
3.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
4.
By using a convergent methodology, a novel series of N-arylated 4-yl-benzamides containing a bi-heterocyclic thiazole–triazole core was synthesized, and the structures of these hybrid molecules, 9a–k , were corroborated through spectral analyses. The in vitro studies of these multifunctional molecules demonstrated their potent carbonic anhydrase inhibition relative to the standard used. The kinetics mechanism was exposed by Lineweaver–Burk plots, which revealed that 9j inhibited carbonic anhydrase non-competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 1.2 μM. The computational study was also persuasive with the experimental results, and these molecules disclosed good results of all scoring functions and interactions, which suggested a good binding to carbonic anhydrase. So, it was predicted from the inferred results that these molecules might be considered as promising medicinal scaffolds for various diseases related to the uncontrolled production of this enzyme.  相似文献   
5.
6.
The stereoselective synthesis of 1,3-enynes from 1,3-diynes is demonstrated by palladium-catalyzed selective C–C bond cleavage of cyclopropanol. Exclusive formation of mono-alkenylated adducts was achieved by eliminating the possibility of di-functionalization with high stereoselectivity. Indeed, this protocol worked very well with electronically and sterically diverse substrates. Several studies, including deuterium labeling experiments and intermolecular competitive experiments, were carried out to understand the mechanistic details. The atomic-level mechanism followed in the catalytic process was also validated using DFT calculations, and the rate-controlling states in the catalytic cycle were identified. Furthermore, preliminary mechanistic investigations with radical scavengers revealed the non-involvement of the radical pathway in this transformation.

Palladium-catalyzed tandem activation and functionalization of readily accessible cyclopropanols have been demonstrated to access valuable conjugated enynes from 1,3-diynes with high stereo-selectivity.  相似文献   
7.
Novel thermoplastic segmented poly(urethane-thiourea)s (PURs) were synthesized via one-step polymerization from aromatic diols containing sulfur (thiourea linkage) in the main-chain, including terephthaloyl bis (3-(2-hydroxopyridyl) thiourea) (TBHPT) and terephthaloyl bis (3-(5-naphtholyl) thiourea) (TBNT), along with 1,4-phenylene diisocyanate (PDI) as hard segment and 20, 50 and 80 mol% polyethylene glycol (PEG) as a soft segment. The prepared chain extenders and polymers were characterized by conventional methods, and physical properties such as ηinh, solubility, thermal stability and thermal behavior were studied. Easily processable PURs with excellent thermal stability were obtained by incorporating 20 mol% PEG in the soft segment. Thermogravimetric analysis indicated that poly(urethane-thiourea)s were fairly stable above 500 °C and own high glass transition temperatures about 263-266 °C. These polymers also showed partially crystalline structures. Ultimately, weight average molecular weights (Mw) of PURs were up to 109 × 103. Compared to typical polyurethanes, PURs exhibited better thermal stability and Tg’s owing to rigid hard segment structure.  相似文献   
8.

Abstract  

A simple and environmentally benign green method is reported to decorate growing fungal hyphae with high loading of gold nanoparticles, which were initially produced using aqueous tea extract as a sole reducing/stabilizing agent. Inoculation of fungal spores in aqueous suspension of nanoparticles led to the growth of intensely red-coloured fungal hyphae due to the accumulation of gold nanoparticles. Heat treatment of these hybrid materials led to the formation of porous gold microwires. This report is thus an interesting example of using green and sustainable approach to produce nanostructured materials which have potential applications in catalysis, sensing and electronics.  相似文献   
9.
We prepared two geometric isomers of [Ir(tpy)(ppy)H]+, previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground‐ and excited‐state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C‐trans‐[Ir(tpy)(ppy)H]+, reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3CN/TEOA, a common reactive C‐trans‐[Ir(tpy)(ppy)]0 species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.  相似文献   
10.
We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO2 nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M2+/M3+ atomic ratio of 3) and varied amount of MnCl2.4H2O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO2 nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO2 nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H2O2 as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO2 and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM−1. This outstanding performance enables it to be used for real-time tracking of H2O2 secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号