首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2216篇
  免费   97篇
  国内免费   6篇
化学   1576篇
晶体学   5篇
力学   16篇
数学   308篇
物理学   414篇
  2023年   11篇
  2022年   25篇
  2021年   26篇
  2020年   33篇
  2019年   40篇
  2018年   22篇
  2017年   26篇
  2016年   53篇
  2015年   77篇
  2014年   63篇
  2013年   100篇
  2012年   112篇
  2011年   121篇
  2010年   90篇
  2009年   78篇
  2008年   107篇
  2007年   120篇
  2006年   101篇
  2005年   115篇
  2004年   78篇
  2003年   71篇
  2002年   72篇
  2001年   50篇
  2000年   37篇
  1999年   29篇
  1998年   39篇
  1997年   31篇
  1996年   35篇
  1995年   28篇
  1994年   35篇
  1993年   24篇
  1992年   31篇
  1991年   29篇
  1990年   26篇
  1989年   22篇
  1988年   11篇
  1987年   27篇
  1986年   16篇
  1985年   22篇
  1984年   15篇
  1983年   11篇
  1982年   24篇
  1981年   24篇
  1980年   24篇
  1979年   15篇
  1978年   10篇
  1973年   8篇
  1970年   10篇
  1969年   8篇
  1968年   8篇
排序方式: 共有2319条查询结果,搜索用时 15 毫秒
1.
2.
3.
Extending to r > 1 a formula of the authors, we compute the expected reflection distance of a product of t random reflections in the complex reflection group G(r, 1, n). The result relies on an explicit decomposition of the reflection distance function into irreducible G(r, 1, n)-characters and on the eigenvalues of certain adjacency matrices.Received December 8, 2003  相似文献   
4.
This is the second in a two-part series of articles in which we analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation allowing finite time shock formation. In this article we analyze the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave (a situation typically encountered in applications). After presenting some exact solutions of the full system, a multiscale perturbation method is used to resolve several basic wave interactions. The analysis breaks down into two categories: the nonlinear limit and the linear limit, corresponding to the form of the equations when the group velocity to shock speed ratio, denoted by ε, is zero. The former case is an integrable limit in which the model reduces to the cubic nonlinear Schrödinger equation governing the dispersive wave envelope. We focus on the interaction of a “fast” shock wave and a single hump soliton. In the latter case, the ε=0 problem reduces to the linear Schrödinger equation, and the focus is on a fast shock interacting with a dispersive wave whose amplitude is cusped and exponentially decaying. To motivate the time scales and structure of the shock-dispersive wave interactions at lowest orders, we first analyze a simpler system of ordinary differential equations structurally similar to the original system. Then we return to the fully coupled partial differential equations and develop a multiscale asymptotic method to derive the effective leading-order shock equations and the leading-order modulation equations governing the phase and amplitude of the dispersive wave envelope. The leading-order interaction equations admit a fairly complete analysis based on characteristic methods. Conditions are derived in which: (a) the shock passes through the soliton, (b) the shock is completely blocked by the soliton, or (c) the shock reverses direction. In the linear limit, a phenomenon is described in which the dispersive wave induces the formation of a second, transient shock front in the rapidly moving hyperbolic wave. In all cases, we can characterize the long-time dynamics of the shock. The influence of the shock on the dispersive wave is manifested, to leading order, in the generalized frequency of the dispersive wave: the fast-time part of the frequency is the shock wave itself. Hence, the frequency undergoes a sudden jump across the shock layer.In the last section, a sequence of numerical experiments depicting some of the interesting interactions predicted by the analysis is performed on the leading-order shock equations.  相似文献   
5.
Two new ferroelectric oligosiloxanes, a cyclic tetramer and a twin, have been synthesized. By a comparative study with their corresponding monomer and side chain polysiloxanes, the influence of oligo- and polymerization on the liquid crystalline and ferroelectric properties have been investigated. Polymerization leads to a stabilization of LC phases through increase of the clearing temperatures and suppression of crystallization. Oligomerization also leads to mesophase broadening, but, due to the low degree of polymerization, the effect is inferior to the linear polysiloxanes. The low viscosity of the oligosiloxanes ensures response times in the microsecond region, thus being comparable with their monomer and conventional LMWFLCs. It is found that polymerization increases the spontaneous polarization Ps. This is attributed to the density increase after polymerization, enhancing the inter-mesogenic interactions. The collective and local dynamics of the OFLCs are influenced differently with respect to their molecular structures. Each oligomer is already a good model for its corresponding polymer concerning the soft mode dynamics. For the local β-relaxation a similar temperature dependence of the relaxation times τ for the cyclic tetramer and for the side chain polysiloxanes is observed. The long axial rotation of the twin, having a very efficient decoupling, is significantly faster, thus resembling the monomer.  相似文献   
6.
The synthesis of enantiopure bis-THF is described, starting from d-mannitol. Bis-THF is used as chiral ligand for organolithium reagents in four different reactions. The enantioselectivity provided by this ligand is moderate, and the asymmetric induction is in line with the expected model.  相似文献   
7.
The exciton-exciton interaction is investigated for spatially indirect excitons in coupled quantum wells. The Hartree-Fock and Heitler-London approaches are improved by a full two-exciton calculation including the van der Waals effect. Using these potentials for the singlet and triplet channel, the two-body scattering matrix is calculated and employed to derive a modified relation between exciton density and blue shift. Such a relation is of central importance for gauging exciton densities on the way toward Bose condensation.  相似文献   
8.
High-accuracy film thickness measurements in the range below 100 nm can be made by various complex methods like spectral ellipsometry (SE), scanning force microscopy (SFM), grazing incidence X-ray reflectometry (GIXR), or X-ray fluorescence analysis (XRF). The measurement results achieved with these methods are based on different interactions between the film and the probe. A key question in nanotechnology is how to achieve consistent results on a level of uncertainty below one nanometre with different techniques.Two different types of thickness standards are realised. Metal film standards for X-ray techniques in the thickness range 10 to 50 nm are calibrated by GIXR with monochromatised synchrotron radiation of 8048 eV. The results obtained at four different facilities show excellent agreement. SiO2 on Si standards for SE and SFM in the thickness range 6 to 1000 nm are calibrated by GIXR with monochromatised synchrotron radiation of 1841 eV and with a metrological SFM. Consistent results within the combined uncertainties are obtained with the two methods. Surfaces and interfaces of both types of standards are additionally investigated by transmission electron microscopy (TEM). PACS 61.10.Kw; 68.55.Jk; 06.20.Fn; 06.60.Mr; 07.79.Lh  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号