首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   6篇
  2012年   1篇
  2011年   5篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.
Anti-reflection coatings of solar cells have been fabricated using different techniques. The techniques used include SiO2 thermal oxidation, ZnO/TiO2 sputtering deposition and porous silicon prepared by electrochemical etching. Surface morphology and structural properties of solar cells were investigated by using scanning electron microscopy and atomic forces microscopy. Optical reflectance was obtained by using optical reflectometer. I-V characterizations were studied under 80 mW/cm2 illumination conditions. Porous silicon was found to be an excellent anti-reflection coating against incident light when it is compared with another anti-reflection coating and exhibited good light-trapping of a wide wavelength spectrum which produced high efficiency solar cells.  相似文献   
2.
Electrochemical etching is used to fabricate porous silicon (PS) surfaces for both sides of the Si wafer. The effect of PS on performance of Si solar cells is investigated and the reflected mirrors are manipulated to enhance solar cell efficiency. The process is promising for solar cell manufacturing due to its simplicity, lower cost and suitability for mass production. The PS surface has discrete pores and short-branched pores on the polished wafer side. In contrast, the etched backside of the wafer has smaller pore size, with random pores. PS formed on both sides has lower reflectivity value compared with results in other works. Solar cell efficiency is increased to 15.4% with PS formed on both sides compared with the unetched sample and other results. Using empirical models, the optical properties of the refractive index and the optical dielectric constant are investigated. The porous surface texturing properties could enhance and increase the conversion efficiency of porous Si solar cells. The obtained results are in agreement with experimental and other data.  相似文献   
3.
Nanostructured GaN layers are fabricated by laser-induced etching processes based on heterostructure of n-type GaN/AlN/Si grown on n-type Si(111) substrate. The effect of varying laser power density on the morphology of GaN nanostructure layer is observed. The formation of pores over the structure varies in size and shape. The etched samples exhibit dramatic increase in photoluminescence intensity compared to the as-grown samples. The Raman spectra also display strong band at 522 cm−1 for the Si(111) substrate and a small band at 301 cm−1 because of the acoustic phonons of Si. Two Raman active optical phonons are assigned h-GaN at 139 and 568 cm−1 due to E2 (low) and E2 (high), respectively. Surface morphology and structural properties of nanostructures are characterized using scanning electron microscopy and X-ray diffraction. Photoluminance measurement is also taken at room temperature by using He–Cd laser (λ = 325 nm). Raman scattering is investigated using Ar+ Laser (λ = 514 nm).  相似文献   
4.
This work reports the fabrication of porous N-GaN structures and their quantitative structural characteristic study based on mathematical morphology analysis using scanning electron microscope (SEM) images. The evaluation of N-GaN quality is carried out by performing a nondestructive investigation of its micro and nanostructures, which in turn is performed by adapting image analysis techniques to obtain rapid, objective, and quantitative information. The algorithm used in this work was implemented using the MATLAB software. Using the algorithm made obtaining the distribution of maximum, minimum, and average radius of the pores in the N-GaN structures possible. Calculating the area occupied by the pores allowed the porosity of the structures to be obtained. The quantitative results were obtained and related to the fabrication process characteristics, showing their reliability and potential to be used for controlling the pores in the formation process. Thus, this technique can provide a more accurate determination of pore sizes and pore distributions.  相似文献   
5.
Nanowires with dimensions of few nanometers were formed on the whole etched surface. The optical analysis of silicon nanostructures was studied. Blue shift luminescence was observed at 660 nm for PS produced by electrochemical etching, and at 629 nm for laser-induced etching. PS produced a blue shift at 622 nm using both etching procedures simultaneously. X-ray diffraction (XRD) was used to investigate the crystallites size of PS as well as to provide an estimate of the degree of crystallinty of the etched sample. Refractive index, optical dielectric constant, bulk modulus and elasticity are calculated to investigate the optical and stiffness properties of PS nanowires, respectively. The elastic constants and the short-range force constants of PS are investigated.  相似文献   
6.
Porous silicon (PS) surfaces were fabricated by electrochemical etching for both sides of the Si wafer. The objective of the present study is to investigate the PS effect on performance of silicon solar cells. Moreover, enhancement of solar cell efficiency can be obtained by manipulating of the reflected mirrors, and the process is very promising for solar cells manufacturing due to its simplicity, lower cost and suitability for mass production. The surface of PS is observed to have been discrete pores with smooth walls, and with short branches pores for the polished wafer side. In contrast, the etched backside of the wafer was observed to have bigger pore size than the etched polished side, and pores on the surface are in random location. PS formed on the both sides has lower reflectivity value in comparison to the other researcher group. The increase in efficiency of solar cell fabricated with PS formed on both sides of the wafer were extremely observed in comparison to one side PS and bulk silicon solar cells respectively. Solar cell fabricated shows that the conversion efficiency increased to 14.5% in comparison to unetched sample. The porous surface texturing properties could enhance and increased the conversion efficiency of silicon solar cells, these results also showed that the efficiency with this procedure is more promising in comparison to other solar cells, which are fabricated under similar conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号