首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   6篇
晶体学   2篇
数学   3篇
物理学   10篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1993年   2篇
  1992年   1篇
  1985年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
A generalized set of magnetization modes for quantifying cross-correlation contributions to longitudinal relaxation in strongly coupled spin systems is described in this paper. Such a set of modes (called longitudinal multiple-quantum modes) is used to unravel cross-correlation information in strongly coupled systems, where the strength of the J coupling tends to obscure such effects. The applicability of such methods is demonstrated for a small molecule which exhibits some strong coupling effects even at high magnetic field strengths. The contribution of "remote" cross correlations to the longitudinal relaxation of strongly coupled spins is detailed. Copyright 2000 Academic Press.  相似文献   
2.
Arvind  Kavita Dorai  Anil Kumar 《Pramana》2001,56(5):L705-L713
A scheme to execute an n-bit Deutsch-Jozsa (DJ) algorithm using n qubits has been implemented for up to three qubits on an NMR quantum computer. For the one- and the two-bit Deutsch problem, the qubits do not get entangled, and the NMR implementation is achieved without using spin-spin interactions. It is for the three-bit case, that the manipulation of entangled states becomes essential. The interactions through scalar J-couplings in NMR spin systems have been exploited to implement entangling transformations required for the three bit DJ algorithm.  相似文献   
3.
A novel diffusion-edited 3D NMR experiment that incorporates a BEST-HMQC pulse sequence in its implementation is presented. Heteronuclear 3D DOSY NMR experiments are useful in elucidating the diffusion coefficients of individual constituents of a mixture, especially in cases where the proton NMR 2D DOSY spectra show considerable overlap. The present 3D BEST-DOSY pulse sequence provides a more sensitive and less time-consuming alternative to standard 3D HMQC-DOSY experiments. Cleanly separated subspectra of individual mixture components are obtained, leading to the determination of diffusion coefficients with better accuracy. The feasibility of the technique is demonstrated on a mixture of amino acids, on a mixture of small molecules with similar diffusion coefficients, and on a complex mixture with large dynamic range (commercial gasoline). The implications of using adiabatic decoupling schemes and band-selective shaped pulses for selective BEST-DOSY experiments on proteins are also discussed.  相似文献   
4.
The structural characterization of different kinds of zigzag and chiral single-walled carbon nanotubes (SWNTs) has been investigated theoretically using (19)F NMR spectroscopy. The chemical shift anisotropy (CSA) tensor is computed at different levels of theory for the (19)F nuclei in different forms of functionalized fluorinated carbon nanotubes (CNT). A set of fluorine CSA parameters comprising the span, skew, and isotropic chemical shift is computed for each form of the fluoronanotubes and multidimensional CSA parameter correlation maps are constructed. We show that these correlations are able to clearly distinguish between the chiral and zigzag forms of fluorinated carbon nanotubes (F-SWNTs). Implications for solid-state and liquid-state NMR experiments are discussed.  相似文献   
5.
The comparison of corona-treated and flame-treated polypropylene (PP) films provides insight into the mechanism of these surface-oxidation processes. Atomic force microscopy (AFM), contact-angle measurements, and X-ray photoelectron spectroscopy (XPS or ESCA) were used to characterize surface-treated biaxially oriented PP. While both processes oxidize the PP surface, corona treatment leads to the formation of water-soluble low-molecular-weight oxidized materials (LMWOM), while flame treatment does not. Computational modeling of the gas-phase chemistry in an air corona was performed using a zero-dimensional plasma-chemistry model. The modeling results indicate that the ratio of O to OH is much higher in a corona discharge than in a flame. Chain scission and the formation of LMWOM are associated with reactions involving O atoms. The higher ratios of O to OH in a corona are more conducive to LMWOM production. Surface-oxidized PP exhibits considerable thermodynamic contact-angle hysteresis that is primarily caused by microscopic chemical heterogeneity.  相似文献   
6.
Palladium(II) and platinum(II) complexes of the types PdLX2, PdL2X2, PtL2X2 and the Pt(IV) complexes PtLX2Y2, PtL2X2Y′2 (where L = mono- or bidentate organic ligand containing nitrogen donor atoms; X = Cl or Br; Y = Br and Y′ = OH) have been synthesized and characterized by elemental analysis, IR and X-ray photoelectron spectral data. The Pd 3d5/2 binding energies indicate that the 8-aminoquinoline ligand is a better electron donor to the metal than other ligands studied. The Cl 2p3/2 binding energies in the square planar pd(II) complexes are observed in the range 198.0–199.56 eV. The ν(PdCl) vibrations (ca 340 and 320 cm?1) corresponding to two cis-Cl ligands were observed in the IR spectra. Binding through probably N-7 of the guanine residue and the phosphate oxygen in a chelate form is implied from UV difference spectral data.  相似文献   
7.
Motivated by the potential usefulness of polyethylene glycol (PEG)/Li+ salt mixtures in several industrial applications, we investigated the structure and dynamics of PEG/LiClO4 mixtures in D2O and its mixtures with CD3CN and DMSO-d6, in a series of PEG-based polymers with a wide variation in their molecular weights. 1H NMR chemical shifts, T1/T2 relaxation rates, pulsed-field gradient NMR diffusion experiments, and 2D HOESY NMR studies have been performed to understand the structural and dynamical aspects of these mixtures. Increasing the temperature of the medium results in a significant perturbation in the H-bonded structure of PEG in its PEG/LiClO4/D2O mixtures as observed from the increase in chemical shifts. On the other hand, the addition of molecular cosolvents has a negligible effect. The hydrodynamic structure of PEG shows a pronounced variation at low temperature with increasing molecular weight, which, however, disappears at higher temperatures. Increasing the temperature leads to a decrease in the hydrodynamic structure of PEG, which can be explained on the basis of solvation–desolvation phenomena. The 2D HOESY NMR spectra reveal a new finding of Li+-water binding in the PEG/LiClO4/D2O mixtures with the addition of molecular solvents, suggesting that the Li+ cation diffuses freely in the D2O mixtures of polymers as compared with the polymer mixtures with DMSO or CD3CN.  相似文献   
8.
In this work, we experimentally created and characterized a class of qubit-ququart PPT (positive under partial transpose) entangled states using three nuclear spins on an nuclear magnetic resonance (NMR) quantum information processor. Entanglement detection and characterization for systems with a Hilbert space dimension 2?3 is nontrivial since there are states in such systems which are both PPT as well as entangled. The experimental detection scheme that we devised for the detection of qubit-ququart PPT entanglement was based on the measurement of three Pauli operators with high precision, and is a key ingredient of the protocol in detecting entanglement. The family of PPT-entangled states considered in the current study are incoherent mixtures of five pure states. All the five states were prepared with high fidelities and the resulting PPT entangled states were prepared with mean fidelity ≥ 0.95. The entanglement thus detected was validated by carrying out full quantum state tomography (QST).  相似文献   
9.
Thin films of ionic conductors have low internal resistance. Hence, it could be used as an electrolyte material in sensors to operate at ambient temperatures. Cerium fluoride, a unipolar fluoride ion conductor, has got a different application in electrochemical sensor. In the present work, cerium fluoride thin films have been prepared by physical vapor deposition method and their electrical properties are studied. X-ray diffraction studies reveal the polycrystalline nature of the prepared thin films and the structure of the material. Scanning electron microscopy (SEM) images show grain-like structures. Conductivity analysis of the thin films has been studied by ac impedance analysis and the maximum conductivity value is found to be 1.04 × 10−6 S cm−1. The impedance spectra emphasize intergranular conduction in the prepared thin films.  相似文献   
10.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号