首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
力学   1篇
数学   2篇
物理学   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Dispersive mixing of immiscible polymer blends as well as polymer systems containing solids is achieved in compounding equipment at two stages of the system's processing experience: first, while one or more of the polymer components are melting, and second, after all polymer components have melted. That is, the first mode of dispersive mixing occurs during the melting mechanism of “dissipative mix melting” (Ref. 1), while the second is melt-melt mixing. During the compounding of a given blend system, there are a number of processing parameters that can be changed in order to improve mixing. These range from machine operating variables to the addition of processing aids. If such processing changes fail to produce the desired morphology, the most common change to consider is the screw geometry. This, in practice involves a trial and error procedure, or the use of an existing database built from prior experience. The role which the thermomechanical and rheological properties of the blend component play in dissipative mix melting and melt-melt mixing has not yet been well understood. The reason for this is that although most blend systems have components which are strongly non-Newtonian and strongly viscoelastic, the thinking and rules of thumb for mixing such materials has been heavily influenced by the analysis of G. I. Taylor (Ref. 2), who in 1932 addressed the phenomenon of the dispersion of a single Newtonian droplet by a Newtonian matrix flowing in laminar shear flow. This paper addresses the strong role that the rheology of blend components, under processing conditions, play in laminar dispersive mixing of polymer blends. From a practical point of view, if the dispersion mechanisms and rates of dispersion depend on the component rheology, then such knowledge can lead us to the selection of advantageous mixing element designs and processing conditions. The experimental results were obtained in dispersive mixing carried out in devices developed in the Polymer Mixing Study (Ref. 3). Such model devices include the Couette Flow Intensive Mixer (CIM) (Ref. 4), where a constant shear stress is applied on the blend components and the Twin Screw Mixing Element Evaluator (TSMEE) (Ref. 5), where the mixing flows are those encountered in actual mixing/compounding operations. The TSMEE will be described in the body of this paper together with its on- and off-line morphology determination capabilities and its in-line rheology sensor. The low-density polyethylene (LDPE) and polystyrene (PS) polymers studied were selected because they cover a wide spectrum of rheological properties.  相似文献   
2.
We present the progress on the benchmarking project for high school timetabling that was introduced at PATAT 2008. In particular, we announce the High School Timetabling Archive XHSTT-2011 with 21 instances from 8 countries and an evaluator capable of checking the syntax of instances and evaluating the solutions.  相似文献   
3.
Laser ablation presents a promising technique for material processing. The quality of products is strongly influenced by the properties of the laser-induced plume. In compressible flow, the ambient conditions can be transmitted upstream. Therefore, the laser ablation process is strongly affected by the ambient conditions. In this paper, the effects of laser intensity, back pressure and temperature on the laser-induced plume were studied using a numerical model, which calculates the density, pressure and temperature of the laser-induced plume at different laser intensity and ambient conditions. The results are in agreement with experimental results available in the literature and can be used for the optimization of the pulsed laser deposition process.  相似文献   
4.
Transient laminar natural convection over a sphere which is subjected to a constant heat flux has been studied numerically for high Grashof numbers (105Gr ≤ 109) and a wide range of Prandtl numbers (Pr = 0.02, 0.7, 7, and 100). A plume with a mushroom-shaped cap forms above the sphere and drifts upward continuously with time. The size and the level of temperature of the transient cap and plume stem decrease with increasing Gr and Pr. Flow separation and an associated vortex may appear in the wake of the sphere depending on the magnitude of Gr and Pr. A recirculation vortex which appears and grows until “steady state” is attained was found only for the very high Grashof numbers (105Gr ≤ 109) and the lowest Prandtl number considered (Pr = 0.02). The appearance and subsequent disappearance of a vortex was observed for Gr = 109 and Pr = 0.7. Over the lower hemisphere, the thickness of both the hydrodynamic (δH) and the thermal (δT) boundary layers remain nearly constant and the sphere surface is nearly isothermal. The surface temperature presents a local maximum in the wake of the sphere whenever a vortex is established in the wake of the sphere. The surface pressure recovery in the wake of the sphere increases with decreasing Pr and with increasing Gr. For very small Pr, unlike forced convection, the ratio δTH remains close to unity. The results are in good agreement with experimental data and in excellent agreement with numerical results available in the literature. A correlation has also been presented for the overall Nusselt number as a function of Gr and Pr.  相似文献   
5.
Nurse rostering is an NP-hard combinatorial problem which makes it extremely difficult to efficiently solve real life problems due to their size and complexity. Usually real problem instances have complicated work rules related to safety and quality of service issues in addition to rules about quality of life of the personnel. For the aforementioned reasons computer supported scheduling and rescheduling for the particular problem is indispensable. The specifications of the problem addressed were defined by the First International Nurse Rostering Competition (INRC2010) sponsored by the leading conference in the Automated Timetabling domain, PATAT-2010. Since the competition imposed quality and time constraint requirements, the problem instances were partitioned into sub-problems of manageable computational size and were then solved sequentially using Integer Mathematical Programming. A two phase strategy was implemented where in the first phase the workload for each nurse and for each day of the week was decided while in the second phase the specific daily shifts were assigned. In addition, local optimization techniques for searching across combinations of nurses’ partial schedules were also applied. This sequence is repeated several times depending on the available computational time. The results of our approach and the submitted software produced excellent solutions for both the known and the hidden problem instances, which in respect gave our team the first position in all tracks of the INRC-2010 competition.  相似文献   
6.
The advantages of synchrotron infrared radiation for micro-spectroscopy have already been demonstrated and exploited in most of the synchrotron facilities. The development of a similar instrument at the ESRF was driven by a twofold motivation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号