首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
化学   43篇
力学   3篇
物理学   12篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2015年   6篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   7篇
  1999年   2篇
  1998年   1篇
排序方式: 共有58条查询结果,搜索用时 62 毫秒
1.
We have used two-color time-resolved magneto-optical Kerr effect spectroscopy to manipulate and detect dynamic processes of spin/magnetic order in a ferromagnetic semiconductor InMnAs. We observed ultrafast photo-induced “softening” (i.e., transient decrease of coercivity) due to spin-polarized transient carriers. This transient softening persists only during the carrier lifetime (2 ps) and returns to its original value as soon as the carriers recombine to disappear. Our data clearly demonstrates that magnetic properties, e.g., coercivity, can be strongly and reversibly modified in an ultrafast manner. We attribute the origin of this unusual phenomenon to carrier-mediated ferromagnetic exchange interactions between Mn ions. We discuss the dependence of data on the pump polarization, pump intensity, and sample temperature. Our observation opens up new possibilities for ultrafast optical manipulation of ferromagnetic order as well as providing a new avenue for studying the dynamics of long-range collective order in strongly correlated many-body systems.  相似文献   
2.
We present a theoretical and experimental study of electron-active cyclotron resonance in p-doped InMnAs in high magnetic fields. Results are based on an 8-band Pidgeon–Brown model generalized to include finite kz effects and s(p)–d exchange interaction between itinerant carriers and Mn d-electrons. The e-active transitions in the valence band in p-doped samples take place due to the nature of multiple valence bands (heavy and light holes). We have calculated the absorption spectra in high magnetic fields and identified optical transitions which contribute to the cyclotron resonance for both e-active and h-active polarizations. Calculations show agreement with experimental results.  相似文献   
3.
This paper demonstrates the application of composite multi-walled carbon nanotube (MWNT) polyvinylchloride (MWNT-PVC) based on 1,5-diphenylcarbazide as chromium ionophore in potentiometric measurement. The sensor shows a good Nernstian slope of 19.52 ± 0.40 mV/decade in a wide linear range concentration of 6.3 × 10−8 to 1.0 × 10−2 M for Cr(NO3)3. The detection limit of this electrode was found to be 3.2 × 10−8 M of Cr(NO3)3 and is applicable in a pH range of 3.0-6.8. It has a short response time of about 10 s. This chromium electrode has a good selectivity over 16 various metal ions. The practical analytical utility of this electrode was demonstrated by measurement of Cr(III) in drinking water and mineral water samples without any serious preliminary pre-treatment and chromium in multivitamin.  相似文献   
4.
Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of errors. The mean relative error for the RSM and ANN models were 1.97% and 2.62% and the root mean square errors (RMSE) were 1.50 and 1.95, respectively. The superiority of the RSM-based approach is due to its high prediction accuracy and the ability to compute the combined effects of the electrospinning factors on the porosity of the nanofiber mats.  相似文献   
5.
Hydroquinone (HQ) loaded polymer solution was electrospun for its topical application. Nanofibers were then investigated in terms of stability, drug release, and antifungal activity. The effect of chitosan (CS) was investigated on the viscosity, stability, drug release, and antifungal activity of the developed formulation. Results indicate a significantly stable HQ-loaded nanofiber formulation. The addition of CS caused hydration of the drug delivery system and enhanced drug release but reduced its stability. HQ-loaded nanofiber mat showed significant antifungal activity, however, there was no inhibition zone in samples containing CS.  相似文献   
6.
7.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   
8.
Three‐dimensional (3D) printing becomes an attractive technique to fabricate tissue engineering scaffolds through its high control on fabrication and repeatability using the printing parameters. This technique can be combined by the finite element method (FEM), and tissue‐specific scaffolds with desirable morphological and mechanical properties can be designed and manufactured. In this study, the influential 3D printing parameters on the morphological and mechanical properties of polycaprolactone (PCL) filament and scaffold were studied experimentally and numerically. First, the effects of printing parameters and process on the properties of extruded PCL filament were investigated. Then, using FEM, the effects of filament specifications on the overall characteristics of the scaffold were evaluated. Results showed that both the printing process in terms of resting time and remaining time and the printing parameters like pressure, printing speed, and printing path length have influenced the filament properties. In addition, both the filament diameter and elastic modulus had significant effects on the properties of scaffold especially, a 20% increase in the filament diameter caused the scaffold compressive elastic modulus to rise by around 72%. It is concluded that the printing parameters and process must be tuned very well in fabricating scaffolds with the desired morphology and mechanical property.  相似文献   
9.
Cross-linked polystyrene (PS) particles having red blood corpuscle (RBC)-like shape were synthesized by one-pot dispersion polymerization of styrene with ethanol/water mixture and ethylene glycol dimethacrylate (EGDMA) as the reaction medium and cross-linker, respectively. Monitoring of the reaction showed that RBC-like shape forms due to asymmetric shrinkage of a cross-linked network during the phase separation. In addition, three dimensional phase diagram was generated based on the yielded data that showed that the formation of such unique shape extremely depends on the polarity of the medium and injection time of the cross-linker. In situ synthesis of RBC-like particles, as promising biomaterials in targeted drug delivery and a model for the understanding of the cell behavior, via such fast and high solid content approach makes it to be conducive to subsequent scale up, i.e. potential commercial adoption.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号