首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   13篇
力学   3篇
物理学   4篇
  2022年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2002年   3篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
We study the growth morphology of thin macrostructure films which is known to be largely affected by the deposition conditions as thin film nucleation and formation is dependent on the kinetic energy and chemical free energy of the atoms. The ion-beam sputtering technique used for depositing thin layers is due to the advantage over other techniques, e.g. the independent control of many process parameters, such as the pressure and/or the energy of the ion-beam and the substrate temperature. Therefore, the dependence of various sputtering parameters such as: (i) sputtering pressure and/or the rate of deposition and (ii) the effect of substrate temperature on the growth has been studied by depositing a single layer of Al. The variations show some interesting dependencies on the structural parameters for the Al layer deposited which has been understood in terms of thin film growth and nucleation theory.  相似文献   
2.
Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren established an important link between DPD and the Flory-Huggins chi-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.  相似文献   
3.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   
4.
We report on the enhanced capabilities of neutron reflectometer V6 at the research reactor BER II at Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in investigating magnetic thin films and multilayers. It is now fully equipped for simultaneous measurements of specular and off-specular scattering with polarization and polarization analysis. The magnetization configuration of a [CoO/Co/Au]×16 polycrystalline multilayer at room temperature is reported in demonstrating the efficiency of the instrument. The data is simulated within the supermatrix formalism under the distorted wave Born approximation for a quantitative analysis.  相似文献   
5.
With the negative environmental implications of the anthropogenic emission of greenhouse gases like CO2 having been scientifically established, emphasis is being placed on a concerted global effort to prevent such gases from reaching the atmosphere. Especially important are capture efforts at large point emission sources like fossil fuel power generation, natural gas processing, and various industrial plants. Given the importance and scale of such activities, it is a significant priority to optimize the capture process in terms of speed, energy requirements, and cost efficiency. For CO2 capture, in particular, multiple systems are being pursued both with near‐term retrofitting and medium‐ to long‐term designs in mind, including: (1) liquid solvents like amines, carbonates, and ionic liquids (ILs); (2) microporous sorbents like zeolites, activated carbon, and metal‐organic frameworks; (3) solid sorbents like metal‐oxides and ionic clays; and (4) polymeric and inorganic membrane separators. Each system is unique in its molecular‐level guest–host interactions, chemistry, heats of adsorption/desorption, and equilibrium thermodynamic and transport properties as a function of loading, temperature, and pressure. This opens up exciting opportunities for molecular modeling in the design and optimization of materials systems. Here, we offer a brief survey of molecular modeling applications in the field of carbon capture, with a few illustrative examples from our own work primarily involving amine solutions and ILs. Important molecular dynamics, Monte Carlo, and correlations‐based work in the literature relevant to CO2 capture in other systems are also discussed. © 2013 Wiley Periodicals, Inc.  相似文献   
6.
Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report density functional theory (DFT) results on POSS binding energies to the Pd(1 1 0) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.  相似文献   
7.
We use time-resolved cryogenic transmission electron microscopy (TR-cryo-TEM) on a supersaturated solution of calcium sulfate hemihydrate to examine the early stages of particle formation during the hydration of the hemihydrate. As hydration proceeds, we observe nanoscale amorphous clusters that evolve to amorphous particles and then reorganize to crystalline gypsum within tens of seconds. Our results indicate that a multistep particle formation model, where an amorphous phase forms first, followed by the transformation into a crystalline product, is applicable even at time scales of the order of tens of seconds for this system. The addition of a small amount of citric acid significantly delays the reorganization to gypsum crystals. We hypothesize that available calcium ions form complexes with the acid by binding to the carboxylic groups. Their incorporation into a growing particle produces disorder and extends the time over which the amorphous phase exists. We see evidence of patches of "trapped" amorphous phase within the growing gypsum crystals at time scales of the order of 24 h. This is confirmed by complementary X-ray diffraction experiments. Direct imaging of nanoscale samples by TR-cryo-TEM is a powerful technique for a fundamental understanding of crystallization and many other evolving systems.  相似文献   
8.
Cryogenic transmission electron microscopy (cryo-TEM) is a powerful method to image native state morphologies of nanoscale soft and hard objects suspended in solvents. Sample preparation is a critical step toward producing images at length and time scales of interest. We demonstrate a nearly shear-free sample thinning method which simultaneously allows imaging of evolving nanostructures at subsecond time scales. This device breaks the trade-off between high shear and short time scales typical in current cryo-TEM sample preparation methods. We demonstrate the low-shear feature of the new method by imaging wormlike micelles, showing an interconnected network, in contrast to the traditional sample preparation method which shows aligned micelles at similar time points. The time resolution of this method is demonstrated by imaging morphologies of calcium carbonate (formed through the reaction of calcium chloride with sodium carbonate) at subsecond time scales, capturing its evolution from an amorphous to a crystalline state. The impact of hyperbranched polyglycerol additives on the amorphous to crystalline transition in calcium carbonate at short times is examined. Early images at low shear provide unique fundamental insights into mechanisms of nanostructure evolution, thus offering a new paradigm for research in materials sciences, soft matter, and biological sciences.  相似文献   
9.
10.
Configurational-bias Monte Carlo simulations in the Gibbs ensemble using the TraPPE force field were carried out to predict the pressure–composition diagrams for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane at 283.17 and 343.13 K. A new approach is introduced that allows one to scale predictions at one temperature based on the differences in Gibbs free energies of transfer between experiment and simulation obtained at another temperature. A detailed analysis of the molecular structure and hydrogen bonding for this fluid mixture is provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号