首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
化学   17篇
物理学   2篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA–FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.  相似文献   
2.
ABSTRACT

Eight Schiff bases have been synthesized by conventional and three different eco-friendly methods, whereby two aromatic carbonyl compounds viz. 2-thiophenecarboxaldehyde and salicylaldehyde were reacted with S-methyl, S-benzyl, and S-n-octyl-dithiocarbazates and thiosemicarbazide. In order to evaluate the efficiency of the synthesis methods, the time to complete the reaction and the yield of the Schiff base synthezised by eco-friendly methods, such as solvent-free grinding, water as a solvent, and lemon juice as catalyst, were compared with those synthesized by the conventional method. The chemical structures of all the synthesized Schiff bases, where two of them are novel and reported for the first time, were fully characterized by a variety of physico-chemical, analytical, and spectroscopic techniques. The molecular and crystal structures of the Schiff bases especially those having 2-thiophene moiety were further elucidated by single crystal X-ray diffraction analyzes.  相似文献   
3.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   
4.
Extensive use of organophosphorus pesticides in agriculture leads to adverse effects to the environment and human health. Sample preparation is compulsory to enrich target analytes prior to detection as they often exist at trace levels and this step is critical as it determines the concentration of pollutants present in samples. The selection of a suitable extraction method is of great importance. The analytical performance of the extraction methods is influenced by the selection of sorbents as sorbents play a vital role in the sensitivity and selectivity of an analytical method. To date, numerous sorbent materials have been developed to cater to the needs of selective and sensitive pesticides’ detection. Comprehensive details pertaining to extraction methods, developed sorbents, and analytical performance are provided. This review intended to provide a general overview on different extraction techniques and sorbents that have been developed in the last 10 years for organophosphorus pesticides’ determinations in food and water samples.  相似文献   
5.
A green, novel, rapid, accurate and reliable capillary zone electrophoresis method was developed and validated for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical preparations. Separation was carried out using fused silica capillary (50 µm i.d. × 48.6 cm and 40.2 cm detection length) and applied potential of 20 kV (positive polarity) and a running buffer containing 15 m m sodium borate buffer adjusted to pH 9.3 with UV detection at 215 nm. Amoxicillin was used as an internal standard. The method was suitably validated according to International Conference on Harmonization guidelines. The method showed good linearity in the ranges of 10–100, 20–400 and 10–400 µg/mL with limits of quantitation of 1.87, 3.17 and 6.97 µg/mL and limits of detection of 0.56, 0.95 and 2.09 µg/mL for tazobactam, piperacillin and cefepime, respectively. The proposed method was successfully applied for the analysis of these drugs in their synthetic mixtures and co‐formulated injection vials. The method was extended to the in vitro determination of the two drugs in spiked human plasma. It is considered a ‘green’ method as it consumes no organic solvents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Protein is one of the essential macronutrients required by all living things. The breakdown of protein produces monomers known as amino acids. The concept of conjugating natural compounds with amino acids for therapeutic applications emerged from the fact that amino acids are important building blocks of life and are abundantly available; thus, a greater shift can result in structural modification, since amino acids contain a variety of sidechains. This review discusses the data available on amino acid–natural compound conjugates that were reported with respect to their backgrounds, the synthetic approach and their bioactivity. Several amino acid–natural compound conjugates have shown enhanced pharmacokinetic characteristics, including absorption and distribution properties, reduced toxicity and increased physiological effects. This approach could offer a potentially effective system of drug discovery that can enable the development of pharmacologically active and pharmacokinetically acceptable molecules.  相似文献   
7.
Neuraminidase (NA) is an enzyme that prevents virions from aggregating within the host cell and promotes cell-to-cell spread by cleaving glycosidic linkages to sialic acid. The best-known neuraminidase is the viral neuraminidase, which present in the influenza virus. Thus, the development of anti-influenza drugs that inhibit NA has emerged as an important and intriguing approach in the treatment of influenza. Garcinia atroviridis L. (GA) dried fruits (GAF) are used commercially as seasoning and in beverages. The main objective of this study was to identify a new potential neuraminidase inhibitor from GA. A bioassay-guided fractionation method was applied to obtain the bioactive compounds leading to the identification of garcinia acid and naringenin. In an enzyme inhibition study, garcinia acid demonstrated the highest activity when compared to naringenin. Garcinia acid had the highest activity, with an IC50 of 17.34–17.53 µg/mL or 91.22–92.21 µM against Clostridium perfringens-NA, and 56.71–57.85 µg/mL or 298.32–304.31 µM against H1N1-NA. Based on molecular docking results, garcinia acid interacted with the triad arginine residues (Arg118, Arg292, and Arg371) of the viral neuraminidase, implying that this compound has the potential to act as a NA enzyme inhibitor.  相似文献   
8.
Abstract

A series of new organotin(IV) dithiocarbamate compounds of type RnSn (S2CNR′R″)4-n (n = 2, 3; R = dimethyl, dibutyl, diphenyl, triphenyl and tert-butyl; R′ = methyl, ethyl, benzyl; R″ = isopropyl, ethyl, ethanol) have been successfully synthesized. Elemental analysis showed that the percentage of the elements conformed to the general formula of these compounds. The important peaks of the infrared spectra for the stretching mode ν(C?N), ν(C?S), and v(Sn-S) for the compounds were observed in the area of 1440–1480 cm?1, 940–1000 cm?1, and 340–90 cm?1, respectively. The 13C NMR spectra showed the most important peak for N13CS2 chemical shifts were observed in the range 190–210 ppm. X-ray single crystal studies for several structures of these compounds showed that the chelating mode of the dithiocarbamate groups to the central tin atoms were either bidentate or anisobidentate.

GRAPHICAL ABSTRACT  相似文献   
9.
Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson’s, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.  相似文献   
10.
Two types of polymer electrolytes were studied: poly(ethylene oxide) (PEO) and epoxidized natural rubber (ENR) both filled with lithium perchlorate. Universal dielectric behavior and impedance relaxation were investigated at room temperature over a wide range of salt concentration. Complex impedance plots exhibit one semicircle in some cases (PEO polymer electrolytes) with an extended spike at low frequencies. This implies a double layer capacity strongly influences conductivity at low frequencies. In the ENR–salt system, semicircles can be obtained only at very high concentrations. This points towards stable resistor dominated networks only develop at very high salt concentrations for this system. Centers of the semicircles lie below real axis indicating non-Debye dielectric relaxation. The relaxation peak broadens and shifts to higher frequencies with increasing salt content. It indicates that the relaxation time of polarization relaxations decreases with ascending salt content. Relaxations occur at extremely low salt concentrations in PEO and only at very high salt concentrations in ENR. Hence, conductivity of ENR–salt is one to two orders of magnitude lower as for PEO–salt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号