首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   9篇
化学   62篇
数学   1篇
物理学   10篇
  2022年   18篇
  2021年   14篇
  2020年   6篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2008年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
Summary Dependences of rate constants on pressure (up to 1 kbar) and on added salt concentration (up to 6.0 mol dm–3 LiNO3, NaNO3, NaCl, Na2SO4 or KNO3) have been established for dissociative substitution of pentacyanoferrates(II), [Fe(CN)5L]3– with L = 4-cyanopyridine, 4,4-bipyridyl, 4-phenylpyridine and 4-t-butylpyridine. Activation volumes derived directly from pressure effects, and indirectly from salt effects via surface tension dependences and derived surfaces of activation, are reported, compared and discussed.  相似文献   
2.
Summary The solvatochromic behaviour of a number of pentacyano-ferrates (II), [FeII(CN)5L] n-, is described, for solutions in H2O-alcohol, -Me2CO and -DMSO mixtures. The strong dependence of solvent sensitivity on the nature of the ligand L is particularly fully documented for H2OMeOH mixtures (0–100% MeOH). The piezochromic behaviour of seven pentacyanoferrates(II) has been established, in aqueous solution. The connection between piezochromism and solvatochromism is detailed, and the solvatochromic results discussed in terms of (preferential) solvation.  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - The increasing need of the modern era of technology for better ways to increase the heat transfer performance of thermal systems has made nanoliquids...  相似文献   
4.
The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.  相似文献   
5.
A straightforward strategy to prepare nanoporous metal oxides with well‐defined shapes is highly desirable. Through thermal treatment and a proper selection of metal‐cyanide coordination polymers, nanoporous nickel‐cobalt mixed oxides with different shapes (i.e., flakes and cubes) can be easily prepared. Our nanoporous materials demonstrate high electrocatalytic activity for oxygen evolution reaction.  相似文献   
6.
Summary Solubilities of tris(ethylmaltolato)iron(III) (ethylmaltol = 3-hydroxy-2-ethyl-4-pyrone) were measured in MeOH-H2O, t-BuOH-H2O and diol-H2O mixtures, and in several primary alcohols. Solvation of the ethylmaltol ligand and of two 4-pyridinone analogues has been investigated through solubility measurements in MeOH- H2O and in t-BuOH-H2O mixtures, and in a series of primary alcohols. The solvation characteristics of these compounds are compared with those of the parent maltol, its iron(III) complex and a number of other nonelectrolytes.  相似文献   
7.
The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.  相似文献   
8.
Developing non-noble-metal oxygen evolution reaction(OER) electrocatalysts with high performance is critical to electrocatalytic water splitting. In this work, we fabricated Co Fe-layered double hydroxide(LDH) nanowire arrays on graphite felt(Co Fe-LDH/GF) via a hydrothermal method. The Co Fe-LDH/GF, as a robust integrated 3 D OER anode, exhibits excellent catalytic activity with the need of low overpotential of 252 and 285 m V to drive current densities of 10 and 100 m A/cm2 in 1.0 mol/L KOH, r...  相似文献   
9.
Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.  相似文献   
10.
Journal of Thermal Analysis and Calorimetry - The ability of the artificial neural network (ANN) to predict the viscosity of graphene nanosheet/ethylene glycol ( $$\mu_{{\text{Gr/EG}}}$$ ) was...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号