首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   4篇
化学   22篇
数学   2篇
物理学   11篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2004年   2篇
  2002年   1篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
2.
Alkoxylation and hydroxylation reactions of 1,5-cyclooctadiene (cod) in an iridium complex with alcohols and water promoted by the reduction of oxygen to hydrogen peroxide are described. The exo configuration of the OH/OR groups in the products agrees with nucleophilic attack at the external face of the olefin as the key step. The reactions also require the presence of a coordinating protic acid (such as picolinic acid (Hpic)) and involve the participation of a cationic diolefin iridium(III) complex, [Ir(cod)(pic)2]+, which has been isolated. Independently, this cation is also involved in easy alkoxy group exchange reactions, which are very unusual for organic ethers. DFT studies on the mechanism of olefin alkoxylation mediated by oxygen show a low-energy proton-coupled electron-transfer step connecting a superoxide–iridium(II) complex with hydroperoxide–iridium(III) intermediates, rather than peroxide complexes. Accordingly, a more complex reaction, with up to four different products, occurred upon reacting the diolefin–peroxide iridium(III) complex with Hpic. Moreover, such hydroperoxide intermediates are the origin of the regio- and stereoselectivity of the hydroxylation/alkoxylation reactions. If this protocol is applied to the diolefin–rhodium(I) complex [Rh(pic)(cod)], free alkyl ethers ORC8H11 (R=Me, Et) resulted, and the reaction is enantioselective if a chiral amino acid, such as l -proline, is used instead of Hpic.  相似文献   
3.
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins’ life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.  相似文献   
4.
5.
In this work we consider a Transportation Location Routing Problem (TLRP) that can be seen as an extension of the two stage Location Routing Problem, in which the first stage corresponds to a transportation problem with truck capacity. Two objectives are considered in this research, reduction of distribution cost and balance of workloads for drivers in the routing stage. Here, we present a mathematical formulation for the bi-objective TLRP and propose a new representation for the TLRP based on priorities. This representation lets us manage the problem easily and reduces the computational effort, plus, it is suitable to be used with both local search based and evolutionary approaches. In order to demonstrate its efficiency, it was implemented in two metaheuristic solution algorithms based on the Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization (SSPMO) and on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) strategies. Computational experiments showed efficient results in solution quality and computing time.  相似文献   
6.
The transfer hydrogenation of N‐heterocyclic carbene (NHC)‐supported diborenes with dimethylamine borane proceeds with high selectivity for the trans‐1,2‐dihydrodiboranes. DFT calculations, supported by kinetic studies and deuteration experiments, suggest a stepwise proton‐first‐hydride‐second reaction mechanism via an intermediate μ‐hydrodiboronium dimethylaminoborate ion pair.  相似文献   
7.
The preparation and characterization of biodegradable films based on starch-PVA-nanoclay by solvent casting are reported in this study. The films were prepared with a relation of 3:2 of starch:PVA and nanoclay (0.5, 1.0, and 1.5% w/v), and glycerol as plasticizer. The nanoclays before being incorporated in the filmogenic solution of starch-PVA were dispersed in two ways: by magnetic stirring and by sonication. The SEM results suggest that the sonication of nanoclay is necessary to reach a good dispersion along the polymeric matrix. FTIR results of films with 1.0 and 1.5% w/v of sonicated nanoclay suggest a strong interaction of hydrogen bond with the polymeric matrix of starch-PVA. However, the properties of WVP, tensile strength, percentage of elongation at break, and Young’s modulus improved to the film with sonicated nanoclay at 0.5% w/v, while in films with 1.0 and 1.5% w/w these properties were even worse than in film without nanoclay. Nanoclay concentrations higher than 1.0 w/v saturate the polymer matrix, affecting the physicochemical properties. Accordingly, the successful incorporation of nanoclays at 0.5% w/v into the matrix starch-PVA suggests that this film is a good candidate for use as biodegradable packaging.  相似文献   
8.
Herein we present the simple fabrication of magneto-polymer nanostructured composites. Specifically, large aspect ratio polymer-based magnetic nanotubes and nanorods have been prepared by means of wetting nanoporous hard templates with loaded polymer melts and solutions, respectively. Morphological characteristics of both one-dimensional composite nanostructures were evaluated by scanning electron microscopy. Moreover, important parameters of the materials such as elemental composition and distribution of the metallic elements were determined by means of X-ray diffraction, and Rutherford backscattering. The different confinement topology of the nanoparticles within the nanorods and the nanotubes leads to a stronger (i.e. ferro-) magnetic response of nanotube arrays, as determined by magnetometry. The magnetic measurements also allowed estimating the concentration of nanoparticles by means of properly fitting experimental data to a sum of different magnetic contributions to the total magnetic moment. The morphological, structural, compositional and magnetic characteristics of nanotubes and nanorods are related to the different wetting approaches used. It has to be noted that, to our knowledge, we present here the first example of nanoparticulated polymer-based composite nanotubes synthesized from the melt, which, indeed seems to be at the origin of their high morphological and compositional quality. The potential of Rutherford backscattering spectroscopy for characterizing soft composite nanostructures has to be also remarked.  相似文献   
9.
Inverse carbon‐free sandwich structures with formula E2P4 (E=Al, Ga, In, Tl) have been proposed as a promising new target in main‐group chemistry. Our computational exploration of their corresponding potential‐energy surfaces at the S12h/TZ2P level shows that indeed stable carbon‐free inverse‐sandwiches can be obtained if one chooses an appropriate Group 13 element for E. The boron analogue B2P4 does not form the D4h‐symmetric inverse‐sandwich structure, but instead prefers a D2d structure of two perpendicular BP2 units with the formation of a double B?B bond. For the other elements of Group 13, Al–Tl, the most favorable isomer is the D4h inverse‐sandwich structure. The preference for the D2d isomer for B2P4 and D4h for their heavier analogues has been rationalized in terms of an isomerization‐energy decomposition analysis, and further corroborated by determination of aromaticity of these species.  相似文献   
10.
The most established approach for ‘practical’ calculations of the inelastic mean free path (IMFP) of low‐energy electrons (~10 eV to ~10 keV) is based on optical‐data models of the dielectric function. Despite nearly four decades of efforts, the IMFP of low‐energy electrons is often not known with the desired accuracy. A universal conclusion is that the predictions of the most popular models are in rather fair agreement above a few hundred electron volts but exhibit considerable differences at lower energies. However, this is the energy range where their two main approximations, namely, the random‐phase approximation (RPA) and the Born approximation, may be invalid. After a short overview of the most popular optical‐data models, we present an approach to include exchange and correlation (XC) effects in IMFP calculations, thus going beyond the RPA and Born approximation. The key element is the so‐called many‐body local‐field correction (LFC). XC effects among the screening electrons are included using a time‐dependent local‐density approximation for the LFC. Additional XC effects related to the incident and struck electrons are included through the vertex correction calculated using a screened‐Hubbard formula for the LFC. The results presented for liquid water reveal that XC may increase the IMFP by 15–45% from its Born–RPA value, yielding much better agreement with available experimental data. The present work provides a manageable, yet rigorous, approach to improve upon the standard models for IMFP calculations, through the inclusion of XC effects at both the level of screening and the level of interaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号