首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   2篇
  2022年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Hypericin (HYP) molecule is a natural photoactive pigment, which plays a role as an effective photoreceptor in some plants of the Hypericum species (the most common of which is Saint John’s Wort) and some insect species. The present work deals with the first attempt to the study of peroxyoxalate chemiluminescence (POCL) system in the presense of HYP as a natural fluorophore. Reaction of bis (2,4,6-trichlorophenyl) oxalate(TCPO)–H2O2–imidazole can transfer energy to a HYP via formation of dioxetane through the chemically initiated electron exchange luminescence (CIEEL) mechanism and can emits a very intense red light. The effects of HYP, hydrogen peroxide, TCPO and imidazole concentrations on kinetic chemiluminescence parameters were also studied. These parameters including rise and fall rate constant for the chemiluminescence burst, theoretical and experimental maximum intensity, theoretical and experimental time to reach maximum intensity and total light yield emission were evaluated by using a pooled intermediate model for a non-linear least-squares curve fitting program, KINFIT. Moreover, quenching effect of two lipophilic natural antioxidant, Quercetin and β-carotene on it system was also investigated. The measurable concentration range of 7×10?6 M to 7.5×10?5 M of antioxidants were evaluated from the proper Stern–Volmer plots with satisfactory RSD% and corresponding detection limits of 2.2×10?6 and 3.7×10?6 for β-carotene and quercetin respectively.  相似文献   
2.

Quinoxaline derivatives are well-known N-heterocycles with pharmacological and fluorescence activities. Almost all quinoxaline derivatives with extensive π-conjugation have been introduced as fluorophores which emit blue and green light. For the first time, we designed and synthesized 6-chloro-2,3 di(Pyridine-2yl) quinoxaline (2-CPQ) as a pink fluorophore in acetonitrile medium by simple route at room temperature whitin 30 min. The synthesized quinoxaline was identified using 1H, 13C NMR, MS, and FT-IR spectroscopy. Our results showed that the iodine-catalyzed method for both oxidation and cyclization during the synthesis of quinoxaline from pyridine 2-carbaldehyde was straightforward, efficient, and clean. All of the mentioned characterization devices confirmed the synthesis of 2-CPQ.

Moreover, we studied the photophysical properties of the synthesized fluorophore in which The UV–Vis absorption spectrum of 2-CPQ in DMF were three peaks at 451, 518 and 556 nm. Based on photophysical properties investigation, 2-CPQ shows good fluorescence with maximum peaks 607 and 653 nm in DMF as solvent (фF?=?0.21). Hence, the fluorophore was applied in the peroxyoxalate chemiluminescence system. The reaction of imidazole, H2O2, and bis (2,4,6-trichlorophenyl) oxalate (TCPO) can transfer energy to a 6-chloro-2,3 di(pyridine-2yl) quinoxaline. In this process, dioxetane was synthesized, which chemically initiated the electron exchange luminescence (CIEEL) mechanism and led to pink light emission. We anticipate our synthesized fluorophores 2-CPQ will have great potential applications in imaging and medical markers.

  相似文献   
3.
In the present work, the effect of fsDNA (fish sperm DNA) on kinetic parameters of chemiluminescence (CL) of the luminol–hydrogen peroxide system catalyzed by Mn(III)–Tetrakis (4-sulfonatophenyl)-porphyrin was investigated. These parameters including pseudo first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL were evaluated by computer fitting of the resulted intensity–time plots. Results reveal that CL parameters are dramatically affected due to interaction of metalloporphyrin with DNA. In order to observe quenching effect of DNA on CL intensity, Stern–Volmer plot with k Q value of 1.18 × 105 M?1 was calculated in the quencher concentration range of 4 × 10?6–8.5 × 10?5 M.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号