首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   1篇
物理学   8篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor γ = 1.5 (i.e. v/c = 0.741), average waveguide height y 0 = 1.445 cm, axial corrugation period z 0 = 1.67 cm, and corrugation amplitude ε = 0.225 cm. The plasma density is varied from zero to 2 ×1012 cm − 3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GHz at 2 ×1012 cm − 3 plasma density) relative to the vacuum cut-off frequency (5 GHz) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.  相似文献   
2.
A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.  相似文献   
3.
Thin films of pure and aluminum-doped zinc oxide (AZO) were deposited on glass substrates from ammonium zincate bath following a chemical dipping technique called successive ion layer adsorption and reaction (SILAR). Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-rays (EDX) were used to investigate the effect of Al doping on the microstructure of AZO films. Particle size analysis using X-ray line broadening shows marginally increasing trend with increasing Al impurity. The average particle size for pure ZnO is 22.75 nm. It increases to 24.26 nm for 1% AZO film and 25.13 nm for 2% AZO film. Incorporation of Al was confirmed from elemental analysis using EDX. SEM micrograph shows that pure ZnO particles are spherical shaped. However, AZO films show particles with off-spherical shape with compact interconnected grains. The value of band gap for pure ZnO is 3.229 eV and it increases to 3.29 eV for 1% AZO indicating a blue-shift for 1% AZO film. However, for 2% AZO film, a decrease in band gap compared to pure ZnO is observed indicating a red-shift of fundamental absorption edge. Electrical resistance shows an initial decrease with increasing Al content. With further enhancement of Al incorporation, the resistance increases.  相似文献   
4.
The India-based Neutrino Observatory Collaboration is planning to set up a magnetized 50 kt iron calorimeter (ICAL) with resistive plate chambers (RPC) as active detectors to study neutrino oscillations and precisely measure its parameters.?A prototype detector stack is set up at TIFR (18°54??N, 72°48??E) to track cosmic ray muons.?Using the muon data, angular distribution of cosmic ray muons at the sea level is studied here.  相似文献   
5.
Event-to-event fluctuation pattern of pions produced by proton and pion beams is studied in terms of the newly defined erraticity measures χ(p, q), $\chi_q^{\prime}$ and $\mu_q^{\prime}$ proposed by Cao and Hwa. The analysis reveals the erratic behaviour of the produced pions signifying the chaotic multiparticle production in high-energy hadron–nucleus interactions (π ???–AgBr interactions at 350 GeV/c and p–AgBr interactions at 400 GeV/c). However, the chaoticity does not depend on whether the projectile is proton or pion. The results are compared with the results of the VENUS-generated data for the above interactions which suggests that VENUS event generator is unable to reproduce the event-to-event fluctuations of spatial patterns of final states. A comparative study of p–AgBr interactions and pp collisions at 400 GeV/c from NA27, with the help of a quantitative parameter for the assessment of pion fluctuation, indicates conclusively that particle production process is more chaotic for hadron–nucleus interactions than for hadron–hadron interactions.  相似文献   
6.
Role of correlated hopping is studied using extended Falicov–Kimball model in a small cluster. A discontinuous insulator-to-metal transition is observed at a critical f-level energy. Transition is sharper for larger correlated hopping. In the specific heat curves a two-peak structure consisting of a sharp peak followed by a Schottky-type broad peak is exhibited. In a limited parameter region, some heavy-fermion like characteristics have been observed.  相似文献   
7.
Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.  相似文献   
8.
Experimental investigation of the thermal conductivity of large grain and its dependence on the trapped vortices in parallel magnetic field with respect to the temperature gradient \(\nabla T\) was carried out on four large-grain niobium samples from four different ingots. The zero-field thermal conductivity measurements are in good agreement with the measurements based on the theory of Bardeen–Rickayzen–Tewordt (BRT). The change in thermal conductivity with trapped vortices is analysed with the field dependence of the conductivity results of Vinen et al for low inductions and low-temperature situation. Finally, the dependence of thermal conductivity on the applied magnetic field in the vicinity of the upper critical field H c2 is fitted with the theory of pure type-II superconductor of Houghton and Maki. Initial remnant magnetization in the sample shows a departure from the Houghton–Maki curve whereas the sample with zero trapped flux qualitatively agrees with the theory. A qualitative discussion is presented explaining the reason for such deviation from the theory. It has also been observed that if the sample with the trapped vortices is cycled through T c, the subsequent measurement of the thermal conductivity coincides with the zero trapped flux results.  相似文献   
9.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号