首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
物理学   6篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
电磁驱动柱形固体套筒内爆加载技术是高能量密度物理实验研究的重要加载方式。由于固体金属具有一定的结合强度, 需外加载荷达到特定阈值才会发生塑性流动, 且在内爆过程中塑性做功会耗散部分电磁力做功而变成金属材料的内能, 进而对固体套筒的内爆过程产生影响。通过弹塑性力学平面轴对称问题的解, 给出了套筒发生塑性流动时外加电流(即屈服电流)与套筒参数的关系。利用考虑材料强度的零维不可压缩模型对铝套筒的内爆过程进行模拟, 并分别与简单零维模型和实验数据进行对比, 结果发现当电流峰值远大于(20倍于)屈服电流时, 金属材料强度的影响甚微;而当峰值电流只数倍于屈服电流时, 金属材料强度的影响便不能忽略。  相似文献   
2.
以阳加速器和PTS装置为驱动源,开了展单晶氟化锂(LiF,通光方向[100])窗口材料在准等熵压缩下的光学特性实验研究。应用全光纤激光多普勒探针系统(DPS,激光波长1550 nm)同时测量了Ly12铝材料电极加窗和未加窗的后界面速度历史,结合窗口材料修正方法获取了单晶氟化锂窗口材料在实验条件下折射率随密度的变化和界面粒子速度修正因子。每次实验可获取窗口材料样品的连续加载历史数据,进而处理得到LiF窗口材料在近50 GPa准等熵压力范围内的修正因子。结合拟合的线性关系,进一步处理获得了在实验过程中折射率随密度的变化。将这些实验结果与D.E. Fratanduono, Y. Ma, B.J. Jensen的对应数据比较,其中与光子多普勒测速系统 (PDV, 1550 nm)测量结果基本相符,不确定度与多次冲击实验得到的结果相当。  相似文献   
3.
磁压缩系统为俄罗斯实验物理研究院提出的核聚变方案。磁压缩系统腔室中杂质粒子可能来源于热脱附、等离子体刮削器壁等途径。利用ANSYS工具模拟5 MA脉冲电流流过腔室,并给出电极温度的二维分布图,结合研究小尺寸铜样品上杂质的解吸附来分析磁压缩系统腔室中热脱附过程产生的杂质粒子。通过测量3 keV的Ar+离子入射到Cu(110),Cu(111)样品表面的飞行时间谱,分析样品表面吸附的杂质种类,以及样品表面杂质含量随温度的变化关系。研究表明杂质粒子含量跟电极温度有关联性,且跟电极材料表面结构相关。  相似文献   
4.
以"阳"加速器和PTS装置为驱动源,开了展单晶氟化锂(LiF,通光方向[100])窗口材料在准等熵压缩下的光学特性实验研究。应用全光纤激光多普勒探针系统(DPS,激光波长1550nm)同时测量了Ly12铝材料电极加窗和未加窗的后界面速度历史,结合窗口材料修正方法获取了单晶氟化锂窗口材料在实验条件下折射率随密度的变化和界面粒子速度修正因子。每次实验可获取窗口材料样品的连续加载历史数据,进而处理得到LiF窗口材料在近50GPa准等熵压力范围内的修正因子。结合拟合的线性关系,进一步处理获得了在实验过程中折射率随密度的变化。将这些实验结果与D.E.Fratanduono,Y.Ma,B.J.Jensen的对应数据比较,其中与光子多普勒测速系统(PDV,1550nm)测量结果基本相符,不确定度与多次冲击实验得到的结果相当。  相似文献   
5.
磁压缩系统为俄罗斯实验物理研究院提出的核聚变方案。磁压缩系统腔室中杂质粒子可能来源于热脱附、等离子体刮削器壁等途径。利用ANSYS工具模拟5 MA脉冲电流流过腔室,并给出电极温度的二维分布图,结合研究小尺寸铜样品上杂质的解吸附来分析磁压缩系统腔室中热脱附过程产生的杂质粒子。通过测量3 keV的Ar+离子入射到Cu(110),Cu(111)样品表面的飞行时间谱,分析样品表面吸附的杂质种类,以及样品表面杂质含量随温度的变化关系。研究表明杂质粒子含量跟电极温度有关联性,且跟电极材料表面结构相关。  相似文献   
6.
材料强度对电磁驱动固体套筒内爆过程的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
电磁驱动柱形固体套筒内爆加载技术是高能量密度物理实验研究的重要加载方式。由于固体金属具有一定的结合强度, 需外加载荷达到特定阈值才会发生塑性流动, 且在内爆过程中塑性做功会耗散部分电磁力做功而变成金属材料的内能, 进而对固体套筒的内爆过程产生影响。通过弹塑性力学平面轴对称问题的解, 给出了套筒发生塑性流动时外加电流(即屈服电流)与套筒参数的关系。利用考虑材料强度的零维不可压缩模型对铝套筒的内爆过程进行模拟, 并分别与简单零维模型和实验数据进行对比, 结果发现当电流峰值远大于(20倍于)屈服电流时, 金属材料强度的影响甚微;而当峰值电流只数倍于屈服电流时, 金属材料强度的影响便不能忽略。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号