首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2021年   2篇
排序方式: 共有2条查询结果,搜索用时 296 毫秒
1
1.
The angular method(AS)cannot be used in long-distance propagation because it produces severe numerical errors due to the sampling problem in the transfer function.Two ways can solve this problem in AS for long-distance propagation.One is zero-padding to make sure that the calculation window is wide enough,but it leads to a huge calculation burden.The other is a method called band-limited angular spectrum(BLAS),in which the transfer function is truncated and results in that the calculation accuracy decreases as the propagation distance increases.In this paper,a new method called modified scaling angular spectrum(MSAS)to solve the problem for long-distance propagation is proposed.A scaling factor is introduced in MSAS so that the sampling interval of the input plane can be adjusted arbitrarily unlike AS whose sampling interval is restricted by the detector’s pixel size.The sampling interval of the input plane is larger than the detector’s pixel size so the size of calculation window suitable for long-distance field propagation in the input plane is smaller than the size of the calculation window required by the zero-padding.Therefore,the method reduces the calculation redundancy and improves the calculation speed.The results from simulations and experiments show that MSAS has a good signal-to-noise ratio(SNR),and the calculation accuracy of MSAS is better than BLAS.  相似文献   
2.
Fang Xue 《中国物理 B》2021,30(8):84209-084209
The transient radial shearing interferometry technique based on fast Fourier transform (FFT) provides a means for the measurement of the wavefront phase of transient light field. However, which factors affect the spatial bandwidth of the wavefront phase measurement of this technology and how to achieve high-precision measurement of the broad-band transient wavefront phase are problems that need to be studied further. To this end, a theoretical model of phase-retrieved bandwidth of radial shearing interferometry is established in this paper. The influence of the spatial carrier frequency and the calculation window on phase-retrieved bandwidth is analyzed, and the optimal carrier frequency and calculation window are obtained. On this basis, a broad-band transient radial shearing interference phase-retrieval method based on chirp Z transform (CZT) is proposed, and the corresponding algorithm is given. Through theoretical simulation, a known phase is used to generate the interferogram and it is retrieved by the traditional method and the proposed method respectively. The residual wavefront RMS of the traditional method is 0.146λ, and it is 0.037λ for the proposed method, which manifests an improvement of accuracy by an order of magnitude. At the same time, different levels of signal-to-noise ratios (SNRs) from 50 dB to 10 dB of the interferogram are simulated, and the RMS of the residual wavefront is from 0.040λ to 0.066λ. In terms of experiments, an experimental verification device based on a phase-only spatial light modulator is built, and the known phase on the modulator is retrieved from the actual interferogram. The RMS of the residual wavefront retrieved through FFT is 0.112λ, and it decreases to 0.035λ through CZT. The experimental results verify the effectiveness of the method proposed in this paper. Furthermore, the method can be used in other types of spatial carrier frequency interference, such as lateral shearing interference, rotational shearing interference, flipping shearing interference, and four-wave shearing interference.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号