首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   3篇
物理学   6篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
局域表面等离激元可以由自由空间的光直接激发,这也是局域表面等离激元的优点所在。研究铋化物发光玻璃中纳米银颗粒的表面等离激元对铒离子发光的增强效应、进一步的提高铋化物发光玻璃中铒离子的发光性能很有意义。首先,测量了(A)Er 3+(0.5%)Ag(0.5%):铋化物发光玻璃与(B)Er 3+(0.5%):铋化物发光玻璃样品的吸收谱,发现(A)Er 3+(0.5%)Ag(0.5%):铋化物发光玻璃在约600.0 nm处有一个较弱的宽的银表面等离激元共振吸收峰。同时发现两者都有典型的铒离子的吸收峰,它们的吸收几乎完全一样:在波峰形状、峰值强度和峰值波长等方面都很相近。测量了(A)Er 3+(0.5%)Ag(0.5%):铋化物发光玻璃和(B)Er 3+(0.5%):铋化物发光玻璃样品的激发谱,发现有位于379.0,406.0,451.0,488.0和520.5 nm的5个550.0 nm可见光的可见激发谱峰,和位于379.0,406.5,451.0,488.5,520.5,544.0,651.5和798.0 nm的8个1531.0 nm红外光的红外激发谱峰,容易指认出依次为Er 3+的4I 15/2→4G 11/2,4I 15/2→2H 9/2,4I 15/2→(4F 3/2,4F 5/2),4I 15/2→4F 7/2,4I 15/2→2H 11/2,4I 15/2→4S 3/2,4I 15/2→4F 9/2和4I 15/2→4I 9/2跃迁的吸收峰,通过测量发现(A)Er 3+(0.5%)Ag(0.5%):铋化物发光玻璃相对于(B)Er 3+(0.5%):铋化物发光玻璃样品的可见和红外激发谱的最大增强依次分别是238%和133%。最后,测量了它们的发光谱,发现有位于534.0,547.5和658.5 nm的三组可见发光峰,容易指认出依次为Er 3+的2H 11/2→4I 15/2,4S 3/2→4I 15/2,4F 9/2→4I 15/2荧光跃迁。还发现红外发光峰位于978.0和1531.0 nm,依次为Er 3+的4I 11/2→4I 15/2和4I 13/2→4I 15/2的荧光跃迁。通过测量发现(A)Er 3+(0.5%)Ag(0.5%):铋化物发光玻璃相对于(B)Er 3+(0.5%):铋化物发光玻璃样品的可见和红外发光谱的最大增强依次分别是215%和138%。对于银表面等离激元增强铒离子发光的机理,认为主要为纳米银颗粒的局域表面等离激元共振,造成金属纳米结构附近产生的局域电场的强度要远大于入射光的电场强度,从而导致了金属纳米结构对入射光产生强烈的吸收和散射,进而导致了荧光的增强;即局域表面等离子体共振局域场的场增强效应。  相似文献   
2.
根据掺杂Er3+(0.5%)的YVO4样品的吸收光谱,用Jubb—Ofelt理论拟合出唯象强度参量Ωλ,并由此计算了激发能级的振子强度、自发辐射跃迁速率、荧光分支比和积分发射截面等光谱参量。并根据这些光学参量,分析了Er3+∶YVO4晶体的应用价值。其中,特别是4I13/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2等几个强发光能级具有较大的振子强度(大于10-6)和积分发射截面(大于10-18cm),分别分析了它们的应用前景,因此非常值得关注。并且,本文结果和Capobianco等所报道的Er3+(2.5 mol%)∶YVO4晶体强度参量结果很相近。而且,通过比较掺Er3+钒酸钇晶体和掺Er3+其他晶体的光学性能,可以看出钒酸钇晶体作为激光晶体的优点。最后,还根据Er3+在晶体中的对称性,利用群论讨论了Er3+在YVO4晶场中各能级的劈裂情况。  相似文献   
3.
采用ICP-AES对钆喷酸氰胺注射液中钆的含量进行了测定,方法的精密度<2%,加标回收实验值与测定结果吻合的很好,结果表明钆喷酸葡胺注射液中钆的含量可以用ICP-AES方法进行控制.  相似文献   
4.
研究了采用北京吉天公司生产的AFS-930型双道原子荧光光度计测定海水中的微量砷,确定了试验的最佳条件.结果表明:方法的检出限为0.006 μg/L,线性范围为0~10.0 μg/L,相关系数在0.9999以上,平行测定多次的相对平均偏差为3.1%,样品加标回收率在97%~103%之间,该方法适用于海水中微量砷的测定.  相似文献   
5.
研究了掺铒的氟氧化物玻璃陶瓷的双光子、三光子与四光子近红外量子剪裁发光.我们测量了掺铒的氟氧化物玻璃陶瓷的X 射线衍射谱、吸收谱、从可见到近红外的发光光谱与激发光谱.当Er3+浓度从0.5%增加到2.0%,发现铒离子的4I15/2→2G7/2,4I15/2→4G9/2,4I15/2→4G11/2,4I15/2→2H9/2,4I15/2→(4F3/2,4F5/2),4I15/2→4F7/2,4I15/2→2H11/2,4I15/2→4S3/2,4I15/2→4F9/2,与4I15/2→4I9/2红外激发谱峰的强度增加了大约5.64,4.26,2.77,7.31,6.76,4.75,2.40,11.14,2.88,和4.61倍,同时,铒离子的4I15/2→2G7/2,4I15/2→4G9/2,4I15/2→4G11/2,4I15/2→2H9/2,4I15/2→(4F3/2,4F5/2),与4I15/2→4F7/2的可见激发谱峰的强度减小了1.36,1.93,3.43,1.01,2.24和2.28倍.也就是说我们发现红外发光与激发的强度都增强了2~11倍,与此相伴的可见的发光与激发强度都减小了一到三倍.而且,1 543.0与550.0 nm发光的激发谱不仅在峰值波长而且也在波峰形状上非常相近.上述实验结果证实了所看到的现象为多光子近红外量子剪裁发光现象.为了更好的分析量子剪裁的过程与机理,还测量了主要的可见与红外发光强度随激发强度的改变;发现所有可见和红外发光强度都基本上是随激发强度成线性变化关系;其中,可见的发光强度随激发强度的改变呈略大于线形一次幂的变化关系,它是由于小的激发态吸收造成的;而1 543.0 nm红外发光强度随激发强度的变化呈略小于线形一次幂的变化关系,它即是量子剪裁发光的特征现象.还发现4I9/2能级的双光子量子剪裁主要由{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01交叉能量传递所导致;4S3/2能级的三光子量子剪裁主要由{4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01和{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01交叉能量传递所导致;2H9/2能级的四光子量子剪裁主要由{2H9/2→4I13/2,4I15/2→4S3/2} ETr91-ETa05,{4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01和{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01交叉能量传递所导致.上述研究结果对目前的全球热点新一代量子剪裁太阳能电池很有价值.  相似文献   
6.
根据掺杂Er3+(0.5%)的YVO4样品的吸收光谱,用Jubb-Ofelt理论拟合出唯象强度参最Ωλ,并由此计算了激发能级的振子强度、自发辐射跃迁速率、荧光分支比和积分发射截面等光谱参量.并根据这些光学参量,分析了Er3+:YVO4晶体的应用价值.其中,特别是4I13/2→4I15/2, 2H11/2→4I15/2, 4S3/2→4I15/2和4F9/2→4I15/2等几个强发光能级具有较大的振子强度(大于10-6)和积分发射截面(大于10-18cm),分别分析了它们的应用前景,因此非常值得关注.并且,本文结果和Capobianco等所报道的Er3+(2.5 mol%):YVO4晶体强度参量结果很相近.而且,通过比较掺Er3+钒酸钇晶体和掺Er3+其他晶体的光学性能,可以看出钒酸钇晶体作为激光晶体的优点.最后,还根据Er3+在晶体中的对称性,利用群论讨论了Er3+在YVO4晶场中各能级的劈裂情况.  相似文献   
7.
本研究首次把预先制备好的Ag@SiO2纳米核壳结构成功地引进到碲化物发光玻璃70TeO2-25ZnO-5La2O3-0.5Er2O3体内,发现(A)Ag(1.6×10?6mol/L)@SiO2(40 nm)@Er3+(0.5%):铒碲发光玻璃相对于样品(B)Er3+(0.5%):铒碲发光玻璃的可见光与红外光的激发光谱强度的最大增强依次为149.0%与161.5%,可见光与红外光的发光光谱强度则依次最大增强了155.2%与151.6%,同时还发现样品(A)相对于样品(B)的寿命显著变长。由于Ag@SiO2的表面等离子体吸收峰恰好位于546.0 nm,它与铒离子的发光峰546.0 nm完全共振,因此,Ag@SiO2对铒碲发光玻璃的发光共振增强作用显著。由于银的纳米核壳结构与玻璃的制作具有分步实现的优点,它既能成功控制Ag@SiO2的尺寸,而且在Ag@SiO2@Er:铒碲发光玻璃的制作过程中还具有可操作性强的优点,同时价格也更加便宜。在保证银不被氧化的前提下,还可控制稀土离子发光中心与银的表面等离子体之间的距离,因此能够成功地减少背向能量反传递。上述优点促成了Ag@SiO2纳米核壳结构表面等离子体有效加强了Ag@SiO2@Er3+:铒碲发光玻璃的常规光致发光强度。  相似文献   
8.
有趣的贵金属表面等离激元的光学性质,尤其是在发光增强领域的表现,使得它已经成为全球的一个研究热点。表面等离激元就是光与贵金属中的自由电子相互作用时,自由电子和光波电磁场由于共振频率相同而形成的一种集体振荡态。该文研究了碲化物玻璃中银纳米颗粒的表面等离激元共振增强铒离子的发光。我们测量了吸收谱、激发谱、发光谱以及荧光寿命。首先,我们挑选365.5和379.0 nm吸收峰作为激发波长测量了385~780 nm波长范围的可见发光光谱,发现有4个发光峰,依次位于408.0, 525.0, 546.0和658.5 nm,容易指认出它们依次为铒离子的~2H_(9/2)→~4I_(15/2),~2H_(11/2)→~4I_(15/2),~4S_(3/2)→~4I_(15/2)和~4F_(9/2)→~4I_(15/2)的荧光跃迁;可以计算出[80 nm平均粒径纳米银的Er~(3+)(0.5%)Ag(0.2%):碲化物玻璃的样品A]的上述4个可见发光的峰值强度是[Er~(3+)(0.5%):碲化物玻璃的样品C]的大约1.44~2.52倍。同时,[50 nm平均粒径纳米银的Er~(3+)(0.5%)Ag(0.2%):碲化物玻璃的样品B]的上述4个可见发光的峰值强度是样品C的大约1.08~1.55倍。随后,我们挑选365.5和379.0 nm吸收峰作为激发波长测量了928~1 680 nm波长范围的近红外发光光谱,发现近红外波段有两个发光峰,位于979.0和1 530.0 nm,容易指认出它们依次为铒离子的~4I_(11/2)→~4I_(15/2)和~4I_(13/2)→~4I_(15/2)的荧光跃迁;同样可以计算出样品A的上述2个近红外发光的峰值强度是样品C的大约1.43~2.14倍。同时,样品B的上述2个近红外发光的峰值强度是样品C的大约1.28~1.82倍。因此,发光的最大增强大约是2.52倍。从荧光寿命动力学实验,我们发现样品A的荧光寿命为τ_A(550)=43.5μs,样品B的荧光寿命为τ_B(550)=43.2μs,样品C的荧光寿命为τ_C(550)=48.6μs。这些实验结果证实了τ_A≈τ_Bτ_C。它意味着样品(B)相对于样品(C)的发光增强是源于自发辐射增强效应。然而,它也意味着样品(A)相对于样品(B)的发光增强是源于纳米银颗粒的粒径尺寸r效应。也就是说当粒径尺寸r增大的时候,散射截面C_s和r~6成正比,而吸收截面C_a和r~3成正比,因此散射截面C_s增大的速度会远大于吸收截面C_a增大的速度,而散射截面C_s是荧光增强的原因,吸收截面C_a是荧光减弱的原因,所以随着银纳米颗粒尺寸的增大,其散射截面占主要部分,当发光材料和金属表面等离子体SP发生耦合时,能量快速的转移到金属表面等离子体SP上,而后被散射到远场,这有利于增强荧光。其综合的结果就导致了发光强度会随r的增大而增强。上述实验的结果对太阳能电池的光伏发电和生物物理应用等领域都有着很好的应用前景。  相似文献   
9.
建立了怏速灵敏的反卡相高效液相色谱法用于测定气溶胶、雨水、雪水、海水中超痕量Fe(Ⅱ)。Fe(Ⅱ)与Ferrozille(FZ)络合,在pH4~10形成稳定络合物离子[Fe(FZ)3]2,由[Fe(FZ)3]^2在254nm的色谱峰测定相应的Fe(Ⅱ)浓度。利用反相C18 Sep-Pak固相萃取柱预浓缩水样可使Fe(Ⅱ)检出限达0.1nmol/L。5min内完成一次测定利用此法首次系统测定了中国大气溶胶、雨水和雪样中的痕量Fe(Ⅱ)。连续3年测定了由我国传输到北太平洋的沙尘暴颗粒物中的Fe(Ⅱ),提供了火气和海洋中的铁疏耦合反馈机制的重要征据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号