首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   6篇
物理学   6篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
We have measured the temperature dependence of the resistance Rxx and Rxy of a two-dimensional electron system in the regime of the quantum Hall plateau transition. We observe for our sample a considerable large critical exponent κ~ 0.66 - 0.77, which may be due to the dominant electron-phonon scattering. Further we find a simple exponential form of Rxx = Rc exp(-s) in agreement with the theoretically proposed universal scaling function.  相似文献   
2.
We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.  相似文献   
3.
4.
At temperature above 1 K, we measured the temperature dependence of the longitudinal and Hall resistivity ρxx,ρxy in the regime of the quantum Hall plateau-to-plateau transitions. The localization exponent v is extracted with an approach based on the variable range hopping theory. We find the quantity v ≈ 2.3 at the second Landau level, which is proven to be accurately universal.  相似文献   
5.
We study the electron states on lateral double quantum dots coupled in parallel. The charge stability diagrams are given in terms of the gate voltages of both dots. We discover that the two electron states translate from separated states to coupled states continuously by increasing the inter-dot coupling strength. Our results demonstrate that the parallel-quantum-dot tunability bodes well for future quantum computing applications.  相似文献   
6.
We find that there are two time scales t and ε ln t in the asymptotic behaviour of diffusion process in the porous medium, which give us a new insight to the anomalous dimension in this problem. Further we construct an iterative method to calculate the anomalous dimension and obtain an improved result.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号