首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
物理学   2篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Kai-Feng Yin 《中国物理 B》2022,31(11):110703-110703
Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently. In this study, we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction. The proposed modification method gives improvement in dynamic range and reduction of linearity error. Additionally, our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations. An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method. The results indicate that our method's magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT, with the linearity error decreased from 5% to 1%. Under the fluctuations of 5% for optical intensity and ±15 GHz detuning of frequency, the proposed modification method maintains intensity-related instability less than 1% and frequency-related instability less than 8% while the conventional method suffers 15% and 38%, respectively. Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.  相似文献   
2.
We propose a dual-mode optically pumped magnetometer(OPM) that can flexibly switch between single-beam modulation mode and double-beam DC mode.Based on a 4 mm × 4 mm ×4 mm miniaturized vapor cell,the double-beam DC mode achieves a sensitivity of 7 fT/Hz1/2 with probe noise below 4 fT/Hz1/2 and working bandwidth over 65 Hz.This mode is designed to precisely measure the noise floor of a mu-metal magnetic shield.The single-beam modulation mode(sensitivity20 fT/Hz1/2...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号