首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   5篇
物理学   6篇
  2023年   1篇
  2018年   1篇
  2014年   1篇
  2011年   3篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in its docking process. We find that, in the initial conformation, the neck linker has interactions with /30 and forms a 'cover-neck bundle' structure with/30. From this initial structure, the formation of extra turns and the docking of the cover- neck bundle structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rotation. This force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket on the motor head, drives the formation of the extra turn and initiates the neck linker docking process. Based on these findings, a pathway from ATP binding-induced motor head rotation to neck linker docking is proposed.  相似文献   
2.
p53蛋白是一种与细胞周期停滞和细胞凋亡有关的蛋白质.在受到细胞压力或环境扰动后, p53促进下游多个靶基因的转录,介导肿瘤抑制. MDM2是主要的E3泛素连接酶,也是p53的负调控因子. MDM2可促进p53的泛素化和核输出,抑制p53的抑癌活性.因此MDM2对p53的负调控始终是肿瘤治疗中急切需要解决的问题. Nutlin-3a是被证明可以有效抑制p53-MDM2相互作用的小分子抑制剂.本文使用全原子分子动力学模拟,研究Nutlin-3a对p53-MDM2复合物的稳定性的影响.结果表明,通过引起p53和MDM2间Phe19-Gln72的氢键和Glu17-Lys94的盐桥发生的断裂, Nutlin-3a可以削弱p53和MDM2间的相互作用.我们的工作对Nutlin-3a小分子抑制剂的作用机制进行了说明,揭示了抗癌药物Nutlin-3a介导的p53-MDM2复合物亲和力降低的分子机制,并为针对p53蛋白的有效抗癌治疗提供了理论基础.  相似文献   
3.
Docking of the kinesin's neck linker(NL) to the motor domain is the key force-generation process of the kinesin.In this process, NL's β10 portion forms four backbone hydrogen bonds(HBs) with the motor domain. These backbone hydrogen bonds show big differences in their effective strength. The origins of these strength differences are still unclear.Using molecular dynamics method, we investigate the stability of the backbone HBs in explicit water environment. We find that the strength differences of these backbone HBs mainly arise from their relationships with water molecules which are controlled by arranging the surrounding residue sidechains. The arrangement of the residues in the C-terminal part of β10 results in the existence of the water-attack channels around the backbone HBs in this region. Along these channels the water molecules can directly attack the backbone HBs and make these HBs relatively weak. In contrast, the backbone HB at the N-terminus of β10 is protected by the surrounding hydrophobic and hydrophilic residues which cooperate positively with the central backbone HB and make this HB highly strong. The intimate relationship between the effective strength of protein backbone HB and water revealed here should be considered when performing mechanical analysis for protein conformational changes.  相似文献   
4.
5.
6.
刘波  晏世伟  耿轶钊 《中国物理 B》2011,20(12):128702-128702
There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can result in the activation and accumulation of p53. Several experimental studies show that oscillations can be induced by DNA damage following nuclear irradiation. To explore the underlying dynamical features and the role of stochasticity, we discuss the oscillatory dynamics in the well-studied regulatory network motif. The fluctuations around the fixed point of a delayed system are Gaussian in the limit of sufficiently weak delayed feedback, and remain Gaussian along a limit cycle when viewed tangential to the trajectory. The experimental results are recapitulated in this study. We illustrate several features of the p53 activities, which are robust when the parameters change. Furthermore, the distribution in protein abundance can be characterized by its non-Gaussian nature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号