首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2017年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.  相似文献   
2.
In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号