首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
物理学   8篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2016年   1篇
  2014年   2篇
  2011年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
针对工业环境下粗糙金属表面微小振动的在线测量需求,提出了一种基于差动式双波混合干涉的微小振动检测系统。该系统将极性相反的高电压分别施加在两块硅酸铋晶体上以得到差动式双路振动解调信号,进而通过差分处理抑制对电压极性不敏感的噪声并提高灵敏度。为验证所提出方案的可行性,分别进行了仿真分析与实验验证。对一粘连在压电陶瓷上的紫铜片进行振动测量实验,并将振动测量结果分别与施加在压电陶瓷上的电压和激光测振仪的测量结果进行对比。结果表明,利用所提出检测系统可准确获得振动信号的频率、相位和幅值信息,与单路式结构相比,差动式双波混合干涉仪的灵敏度提高了一倍,信噪比从27.47 dB提高到了30.83 dB,相对误差的均方根值从3.07%降低到了1.42%。  相似文献   
2.
利用光场相机采集颗粒图像,改进层析反演算法,可以快速准确地获得颗粒三维空间位置.基于光场相机成像原理,建立光线正向追迹模型,在此基础上对图像非零像素发出的光线进行反向追迹,实现非零像素与空间体素之间的映射,构建层析法反演颗粒三维位置的模型.根据提出的降维求解MART算法权重矩阵方法,结合相似三角形原理提高颗粒深度位置的反演精度.依据高斯Blob模型,将强度最大的体素中心位置作为反演的颗粒三维位置.实验证明改进型MART算法明显减少了计算时间及所需内存,x轴坐标误差为±0.16 mm,y轴坐标误差为±0.18 mm,z轴坐标误差为±1.8 mm,满足精度要求,更加适用于对计算速度要求较高的场合,具有良好实际应用价值.  相似文献   
3.
为了研究基片位置对激光会聚铬原子沉积的影响,基于原子的粒子运动,采用数值计算对基片切割会聚激光场不同部位时高斯激光驻波场光学势阱、原子运动轨迹和沉积条纹进行了仿真。研究结果充分显示了基片位置对上述三方面的影响。虽然基片会对激光产生衍射,但是无论衍射存在与否,沉积条纹半峰全宽的最小值和中心峰值的最大值都出现在基片表面和激光中轴线重合的位置。此时,衍射将使条纹中心峰值降为非衍射时的0.96倍,同时,半峰全宽增加至非衍射时的1.03倍。另外,仿真结果显示,不管是否考虑衍射,垂直于激光中轴线方向(y方向)上沉积条纹的中心峰值随y值的增加呈现单调减小的趋势,而条纹半峰全宽随y值的增加呈现单调递增的趋势。  相似文献   
4.
针对现有点衍射三维坐标测量系统中的坐标高精度解调问题,提出了一种基于Levenbery-Marquardt(LM)算法的点衍射干涉测量方法。基于L-M算法的点衍射测量技术是以点衍射干涉理论为基础,在实现干涉场相位分布信息解调的基础上运用基于L-M算法的二重迭代算法重构出点衍射源的三维坐标。为验证所提出测量方法的可行性,同时进行了计算机仿真和测量实验,并与三坐标测量机的测量结果进行了对比。结果表明:该测量方法可在xyz三维方向上100mm×100mm×300mm空间范围内实现优于微米量级的测量精度。该测量方法具有不依赖算法迭代初值、测量精度高、运算速度快、抗噪声能力强等诸多优点,在三维坐标测量及测量系统的校准中具有较好的实用性。  相似文献   
5.
6.
针对高精度点衍射球面检测系统中金属反射介质的偏振效应,分析了不同偏振态光束在不同孔径角范围情况下所引入的斜反射波前像差.通过数值仿真,对金属反射介质所引入的斜反射相移曲线特征进行了分析,并以此为基础,提出了相应的斜反射波前像差校正方法.利用高精度球面检测中点衍射干涉仪对所提出的校正方法进行了实验验证,并给出了相关实验结...  相似文献   
7.
分析了基于彩色光照的粒子图像测速算法中示踪粒子的成像原理,并根据实际流场中的应用环境以及彩色粒子图像测速算法的实验条件,采用一套由白色光源和波长线性变化的滤波片组成的照明系统,为粒子场提供不同深度、相同光强的彩色体积光照明.根据针孔相机模型和其对应的点扩散函数,建立示踪粒子的三维成像模型,得到在彩色体积光照射下流场中的...  相似文献   
8.
提出了一种基于片光的货车侧面防护装置安装尺寸的测量方法。将线激光光源和摄像机固定在线性传动机构上,通过装置的线性移动,使激光光束在货车侧表面上产生移动,并用相机采集运动过程中的图像,利用激光三角法原理,对采集到的时序图像进行处理,实现对货车侧表面轮廓的三维重建,从而实现对货车侧面防护装置安装尺寸的测量。该方法避免了在普通视觉二维测量过程中,由于防护栏与前后轮胎不共面而造成的测量误差。通过对搭建的实验平台进行的研究表明,测量误差小于1mm,远小于原二维测量方案测量精度10mm,完全满足系统设计的要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号