首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   20篇
  国内免费   44篇
化学   63篇
力学   6篇
综合类   7篇
数学   6篇
物理学   45篇
  2024年   1篇
  2023年   6篇
  2022年   12篇
  2021年   4篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   12篇
  2013年   13篇
  2012年   11篇
  2011年   2篇
  2010年   9篇
  2009年   8篇
  2008年   4篇
  2007年   7篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
1.
激光辐照PC型HgCdTe探测器的实验研究   总被引:10,自引:4,他引:6       下载免费PDF全文
 分别用连续波1.319μm激光和10.6μm激光辐照PC型HgCdTe红外探测器时,得到了不同辐照光功率密度下,探测器输出的一系列实验结果。给出了在波长为1.319μm的波段内激光辐照下PC型HgCdTe探测器的饱和阈值;用波长为10.6μm的波段外CO2激光辐照探测器时,发现了一些与波段内激光辐照探测器时大不相同的实验现象;对实验结果进行了分析。简要总结了PC型HgCdTe探测器对于波段内和波段外激光辐照的响应机制。  相似文献   
2.
储能技术的革命性变化对下一代锂离子电池(LIBs)负极材料提出了更高的要求。近年来,一类具有复杂化学计量比的新型材料——高熵氧化物(HEOs)逐渐进入人们的视野并走向繁荣。理想的元素可调节性和吸引人的协同效应使 HEOs有望突破传统阳极的综合性能瓶颈,为电化学储能材料的设计和发展提供新的动力。本文分别从化学成分调控和结构设计2个方面结合本课题组近年来的研究及国内外重要文献,综述了HEOs作为LIBs负极材料的研究进展。在化学成分调控方面通过金属杂原子掺杂、非金属杂原子掺杂来提高HEOs的本征活性。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构以及复合碳材料来增加HEOs的反应活性位点数量,从而提高储锂性能。最后,对HEOs在LIBs领域的发展进行了展望。  相似文献   
3.
磁共振成像(MRI)是一种强大的非侵入式生物医学诊断技术. 临床上, MRI需要借助造影剂来提高成像质量, 从而提高诊断的准确性. 由于具有优越的信号放大能力和生物相容性, 自组装多肽探针可负载特定的MRI分子, 通过酶促自组装过程实现肿瘤靶向和特异性富集, 增强肿瘤病灶区MRI信号, 从而进一步提高MRI的准确性和灵敏度. 本综述总结了近年来多肽自组装探针在不同MRI模式( 1H MRI, 19F MRI和双自旋核MRI)下的最新进展, 并展望了这类新型探针在MRI领域的应用前景.  相似文献   
4.
阻燃剂废水的处理研究   总被引:1,自引:0,他引:1  
阻燃剂生产过程中产生大量的工业废水,通过对比处理实验研究表明:电解Fenton法是处理阻燃剂生产中产生的高浓度有机废水(CODCr=17108mg/L)的有效方法,它既利用了电氧化、电气浮作用,又利用了Fenton试剂的强氧化作用和化学絮凝作用。其处理废水的条件实验结果表明:pH:2.0~2.6;电流密度10.8~14.3A/dm^2;H2O2初始浓度27~42mmol/L;FeSO4初始质量浓度660~990mg/L;电解5h。CODCr去除率达98.34%,色度去除率达74.19%。色质联用分析显示废水处理后的降解产物是无毒害的醋酸。  相似文献   
5.
将碳纳米管(CNTs)载体分别经混酸与硝酸蒸气预处理并在不同温度下煅烧, 然后分别采用浸渍法及机械研磨法负载磷钨酸(HPW), 制备出HPW/CNTs催化剂, 对比考察了上述催化剂对NOx的吸附与分解效果. 在空速为10000 h-1、 吸附温度为200℃的条件下, 用0.5 g催化剂对1696 mg/m3的NOx进行吸附实验, 结果表明, 以硝酸蒸气预处理且经300℃煅烧后的CNTs为载体, 采用机械研磨负载法制备的催化剂HPW/CNTs对NOx的吸附率与吸附能力最高, 分别为54%与16.6 mg NOx/(g\5h). 对吸附NOx后的催化剂体系进行了催化分解NOx的程序升温脱附-质谱(TPD-MS)研究, 结果表明, 所吸附的NOx在快速升温过程中发生分解, 在此过程中有氧产生, 分解产物包括N2, O2及N2O. 采用电阻炉快速加热与微波辐射2种方式分别对吸附的NOx进行催化分解, 结果表明, 微波功率为700 W时, NOx分解为N2的收率为33.3%, 高于电阻炉以150℃/min快速升温的N2收率. 使用过的催化剂通水蒸气后可实现再生, 对再生后的催化剂进行循环使用研究, 结果表明, 再生后的催化剂吸附与催化分解NOx的性能未有明显下降.  相似文献   
6.
采用CCSD(T)/aug-cc-pVTZ//B3LYP/6-311+G(2df,2p)方法对HO2+H2S反应及单分子水参与其主通道的微观机理和速率常数进行了研究.结果表明,HO2+H2S反应主通道为生成产物为H2O2+HS的通道,其表观活化能为14.94 kJ/mol.考虑单分子水对主产物通道的影响发现,所得的势能面比无水参与的反应复杂得多,经历了H2O…HO2+H2S(RW1),HO2…H2O+H2S(RW2)和H2O…H2S+HO2(RW3)3个通道,RW1~RW6共6个路径.其中通道RW1是水分子参与HO2+H2S反应主通道的优势通道.在216.7~298.2K温度范围内通道RW1的有效速率常数呈现出正温度系数效应,在298 K时,k’RW 1/ktotal达到54.2%,表明在实际大气环境中水分子对HO2+H2S反应的主通道具有明显影响.  相似文献   
7.
将5种离子液体[Bmim]HCO3, [TMG]L, [MEA]L, [Bmim]Cl和[Bmim]BF4分别与N-甲基二乙醇胺(MDEA)水溶液混合, 得到新型复配脱硫剂, 考察了离子液体的消泡性能和复配脱硫剂在不同离子液体、 吸收温度以及复配比例下的脱硫性能, 并且对较优脱硫剂进行了再生性能的研究. 采用离子色谱仪对经臭氧深度处理的再生液进行了SO42-离子浓度测试, 并对脱硫剂进行了密度泛函理论研究, 从而进一步分析了吸收机理. 结果表明, 室温下复配脱硫剂脱硫能力大小顺序为[Bmim]Cl-MDEA-H2O>[Bmim]HCO3-MDEA-H2O>[Bmim]BF4-MDEA-H2O>MDEA-H2O>[TMG]L-MDEA-H2O>[MEA]L-MDEA-H2O. 离子液体与MDEA结合的稳定性为主要影响因素, [Bmim]HCO3的消泡能力最强, [Bmim]Cl-MDEA-H2O, [Bmim]BF4-MDEA-H2O和[Bmim]HCO3-MDEA-H2O脱硫剂可以通入空气获得基本再生, H2S与离子液体的结合越稳定, 脱硫效率越高, 但脱硫剂的再生程度会降低.  相似文献   
8.
磷钼杂多化合物脱硫热力学可行性与硫磺生成机理研究   总被引:2,自引:0,他引:2  
长期以来杂多化合物一直被用作特定反应的催化剂 ,尚无直接利用其氧化还原性能进行污染物治理研究的先例 [1] .由于磷和钼在我国均为丰产元素 ,相应的杂多化合物又具有稳定的化学性能 ,寻找其新的应用领域无疑具有特别重要的意义 .本文对与此相关的脱硫热力学可行性与硫磺生成机理问题进行研究 ,以期为应用开发奠定理论基础 .1 实验部分1 .1 仪器和试剂  31 4型硫离子选择电极 (江苏电分析仪器厂 ) ;DSC- 7型微分量热仪 (美国 Perkin-Elmer公司 ) ;Finber 1 0 0 0型能谱分析仪 (配置 Pioneer KYKY2 80 0型扫描电镜 ) ;UJ33a型电位…  相似文献   
9.
三唑类含能配合物在含能材料领域受到广泛关注。利用溶液法合成了一例含能配合物[Cd (Hatzc)2(H2O)](LH1),其中H2atzc=3-羧基-5-氨基-1,2,4-三唑,并用X射线单晶衍射、元素分析、红外光谱等手段进行表征。单晶结构分析结果表明LH1属于单斜晶系,空间群为P21/n,呈一维链状结构,通过氢键相互作用形成三维超分子结构。LH1的爆速(D=10.4 km·s-1)、爆压(p=55.2 GPa)、爆轰能量(16.51 kJ·g-1)和密度(2.363 g·cm-3)均优于大多数含能配合物。撞击感度(>40 J)和摩擦感度(>360 N)表明LH1对撞击和摩擦的敏感性较低。高氯酸铵(AP)的催化热分解结果表明,在LH1的催化作用下,AP的高温分解峰提前38℃,释放的热量在较短的时间增加0.46 kJ·g-1,说明LH1对AP热分解具有良好的催化效果。  相似文献   
10.
在分析单个衰减片、一对类V字型排列的衰减片、一对平行型排列的衰减片光斑分裂特征的基础上,给出N个衰减片使用时,光斑能量分裂、分裂光斑各级中心间距及重叠部分的表征方法.探寻出2种有效的解决方案,并给出详细的设计方法、使用方法.研究结果表明:存在最优入射角,可使各级杂斑间距最大,对于折射率为1.4~1.7的常用的衰减片介质...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号