首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
物理学   3篇
  2014年   3篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Under investigation in this paper is a(3 + 1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials,symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, B¨acklund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.  相似文献   
2.
Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials, symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, Backlund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.  相似文献   
3.
In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for us to study the integrability, and we find that the equation is not completely integrable. By virtue of the binary Bell polynomials,bilinear form and soliton solutions are obtained, and B¨acklund transformation in the binary-Bell-polynomial form and bilinear form are derived. Soliton collisions are graphically discussed: the solitons keep their original shapes unchanged after the collision except for the phase shifts. Variable coefficients are seen to affect the motion of solitons: when the variable coefficients are chosen as the constants, solitons keep their directions unchanged during the collision; with the variable coefficients as the functions of the temporal coordinate, the one soliton changes its direction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号