首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2020年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Hafnium disulfide(HfS2) is a promising two-dimensional material for scaling electronic devices due to its higher carrier mobility, in which the combination of two-dimensional materials with traditional semiconductors in the framework of CMOS-compatible technology is necessary. We reported on the deposition of HfS2 nanocrystals by remote plasma enhanced atomic layer deposition at low temperature using Hf(N(CH3)(C2H5))4 and H2S as the reaction precursors. Selflimiting reaction behavior was observed at the deposition temperatures ranging from 150℃ to 350℃, and the film thickness increased linearly with the growth cycles. The uniform HfS2 nanocrystal thin films were obtained with the size of nanocrystal grain up to 27 nm. It was demonstrated that higher deposition temperature could enlarge the grain size and improve the HfS2 crystallinity, while causing crystallization of the mixed HfO2 above 450℃. These results suggested that atomic layer deposition is a low-temperature route to synthesize high quality HfS2 nanocrystals for electronic device or electrochemical applications.  相似文献   
2.
张璐  洪海洋  王一森  李成  林光杨  陈松岩  黄巍  汪建元 《中国物理 B》2017,26(11):116802-116802
Polycrystalline Ge_(1-x)Sn_x(poly-Ge_(1-x)Sn_x) alloy thin films with high Sn content( 10%) were fabricated by cosputtering amorphous GeSn(a-GeSn) on Ge(100) wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm~2 to 550 mJ/cm~2. High quality poly-crystal Ge_(0.90) Sn_(0.10) and Ge_(0.82) Sn_(0.18) films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge_(1-x)Sn_x by Raman spectra.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号