首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
物理学   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
殷克迪  张西通  黄庆  薛建明 《中国物理 B》2017,26(6):60703-060703
Ternary M_(n+1)AX_n phases with layered hexagonal structures, as candidate materials used for next-generation nuclear reactors, have shown great potential in tolerating radiation damage due to their unique combination of ceramic and metallic properties. However, M_(n+1)AX_n materials behave differently in amorphization when exposed to energetic neutron and ion irradiations in experiment. We first analyze the irradiation tolerances of different M_(n+1)AX_n(MAX) phases in terms of electronic structure, including the density of states(DOS) and charge density map. Then a new method based on the Bader analysis with the first-principle calculation is used to estimate the stabilities of MAX phases under irradiation. Our calculations show that the substitution of Cr/V/Ta/Nb by Ti and Si/Ge/Ga by Al can increase the ionicities of the bonds,thus strengthening the radiation tolerance. It is also shown that there is no obvious difference in radiation tolerance between M_(n+1)AC_n and M_(n+1)AN_n due to the similar charge transfer values of C and N atoms. In addition, the improved radiation tolerance from Ti_3AlC_2 to Ti_2AlC (Ti_3AlC_2 and Ti_2AlC have the same chemical elements), can be understood in terms of the increased Al/TiC layer ratio. Criteria based on the quantified charge transfer can be further used to explore other M_(n+1)AX_n phases with respect to their radiation tolerance, playing a critical role in choosing appropriate MAX phases before they are subjected to irradiation in experimental test for future nuclear reactors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号