首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
化学   8篇
物理学   2篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 0 毫秒
1
1.
采用原位热聚合技术,分别以多壁碳纳米管(MWCNs)和分子印迹膜(MIM)修饰丝网印刷电极(SPE),与多壁碳纳米管和非分子印迹膜(NIM)修饰的丝网印刷电极组合在一起,并将其组合的丝网印刷电极通过电极插口与便携式电导仪相连接,组装成检测莱克多巴胺残留的电导型传感器,优化检测条件,并建立了检测莱克多巴胺的标准曲线,测试了实际猪尿样中莱克多巴胺的含量.通过扫描电镜分析了该分子印迹膜的表征结构.结果表明,在莱克多巴胺分子印迹膜表面形成了大量印迹微孔.本传感器装置检测莱克多巴胺具有很高的灵敏度和特异性,检出限为0.033 mg/L,线性范围为0.33~8.0 mg/L,基于猪尿样的检测回收率达到91%~98%,可实现现场快速检测.  相似文献   
2.
采用热聚合法制备了莱克多巴胺(ractopamine,RCT)的分子印迹聚合物(molecular imprinted polymers,MIPs)。用紫外分光光度法测定MIPs对RCT的吸附性能,结果发现:RCT在272 nm波长处有最大吸光度,测定RCT的回归方程为y=7.354 1x+0.001 0,R2=0.999 9;合成的MIPs对RCT平均吸附率为83.4%。吸附动力学研究表明,MIPs对RCT的吸附时间应控制在10 min以内。红外光谱分析表明RCT与功能单体甲基丙烯酸通过氢键形成MIPs,该聚合物能够通过氢键专一地识别和结合RCT分子,从而为建立基于分子印迹技术检测RCT的方法奠定了基础。  相似文献   
3.
检测猪肉中地西泮的分子印迹仿生传感器的研制   总被引:3,自引:1,他引:3  
在一次性丝网印刷电极上原位制备地西泮的分子印迹膜,将丝网印刷电极通过电极插口与便携式电导仪相连接,组装成检测地西泮残留的电导型传感器,建立了检测地西泮的标准曲线并测试了实际肉类样品中的地西泮含量.通过扫描电镜分析了该膜的表征,与非印迹膜相比,印迹膜表面形成了大量印迹微孔.本传感器装置对地西泮具有很高的灵敏度和特异性,检出限为0.008 mg/L,线性范围为0.039~1.25 mg/L,基于肉品的检测回收率为91.3%~95.0%,可实现现场快速检测.  相似文献   
4.
柴春彦  徐明刚  刘国艳 《分析化学》2006,34(12):1715-1719
为探索用电化学方法检测生物样品中氯霉素残留的高灵敏度技术,本实验研究了阳离子表面活性剂十六烷基三甲基溴化铵(CTMAB)对氯霉素在玻碳电极上伏安行为的影响,实验结果表明,以0.02 mol/L高氯酸为支持电解质,在0.40~-0.60 V的范围内进行伏安扫描时,2×10-5mol/L CTMAB能显著提高氯霉素在-0.41 V处的还原峰电流。利用这种改进的电化学方法检测氯霉素的线性范围为0.0026~8 mg/L,检出限达到0.83μg/L。研究了缓冲液种类及其酸碱度及其它表面离子活性剂等对测试氯霉素的影响。  相似文献   
5.
采用光聚合法在一次性丝网印刷电极上制备琥珀酸氯霉素分子印迹膜,然后将丝网印刷电极通过电极插口与电化学分析装置相连接,组装成检测琥珀酸氯霉素残留的电化学传感仪.使用与传感装置相连接的记录仪记录响应的结果.采用本传感仪建立了检测氯霉素的标准曲线并测试了实际牛奶样品中氯霉素含量.电镜学观察表明,与非印迹膜相比,在印迹膜表面形成大量直径约为100 nm的印迹微孔.本传感仪装置检测琥珀酸氯霉素具有很高的灵敏度和特异性,检出限为2×10-9 mol/L,检测线性范围为1×10-8~1.2×10-5 mol/L,基于牛奶样品的检测回收率介于93.5%~95.5%之间.  相似文献   
6.
基于分子印迹膜修饰丝网印刷电极的地西泮电化学传感器   总被引:2,自引:1,他引:2  
以地西泮为模板分子,采用循环伏安法在一次性丝网印刷电极表面原位电聚合形成聚邻苯二胺膜,洗脱除去模板分子后得到地西泮分子印迹膜修饰丝网印刷电极。利用差示脉冲法对印迹膜和非印迹膜进行评价,表征了电极表面膜的电化学性质。以KI为印迹电极和底液间的探针,建立了一种间接检测地西泮的传感方法。该传感器的敏感元件为修饰有分子印迹膜的丝网印刷电极,其制备和更换非常方便。用于电化学检测时,样品的富集时间为3min,地西泮的浓度在2.0×10-7~1.0×10-5mol/L范围内与峰电流呈良好的线性关系,检出限为2.5×10-8mol/L,基于猪肉样品的加标回收率为92%~95%。将该传感器初步用于实际样品分析,结果满意。  相似文献   
7.
利用免疫竞争抗制原理制备检测盐酸克伦特罗的免疫纳米金试纸条,盐酸克伦特罗与CLB-BSA复合物竞争性结合胶体金上抗体的有限位点,从而使试纸条上的检测带显色减弱或消失.将显色后的试纸条插入自行研制的光电型传感器的测试孔内,根据反射光的强弱计算出克伦特罗的浓度.结果表明:用光电传感方法检测盐酸克伦特罗的线性范围为1~10 μg/L,检出限为0.05 μg/L,回收率为85.5%~96.0%.此光电型传感器检测克伦特罗具有简便、快速、灵敏、特异性强的优点.  相似文献   
8.
伏安免疫法检测牛奶中氯霉素残留   总被引:6,自引:0,他引:6  
为探索用于现场检测牛乳中氯霉素(CAP)残留的高灵敏度及特异性强的免疫传感器方法,本实验在制备CAP单克隆抗体的基础上,以卵清蛋白-氯霉素(OVA-CAP)偶联物为包被抗原,并将其包被到聚苯乙烯反应板上;在孵育反应中,样品中的CAP与OVA-CAP竞争结合CAP单克隆抗体,洗涤后加入碱性磷酸酶(ALP)标记的二抗,经再次孵育及洗涤后加入对硝基苯磷酸(pNPP)底物液;反应终止后用线性导数伏安法记录pNPP水解产物的氧化峰电流。实验结果表明,用免疫传感法测试CAP的灵敏度高于传统的间接竞争酶联免疫吸附法(ELISA)。该方法检测CAP的检出限为0.064μg/L;检测线性范围为0.15~600μg/L,测试牛奶样品的平均回收率为89.8%。另外,由于免疫电化学传感器体积较小,便于携带,操作简单,可实现牛乳样品中CAP残留的现场检测。  相似文献   
9.
琥珀酸氯霉素分子印迹聚合膜的制备及其吸附特性研究   总被引:2,自引:0,他引:2  
为制备对琥珀酸氯霉素分子具有特异性吸附的分子印迹聚合物膜, 利用模板分子琥珀酸氯霉素(HS-CAP)、功能单体甲基丙烯酸(MA)、交联剂乙二醇二甲基丙烯酸酯(EGDMA)、引发剂偶氮二异丁腈(AIBN)、溶剂四氢呋喃, 采用紫外光引发聚合的方法制备出含有HS-CAP分子印迹位点的印迹聚合微粒, 并使用相转化的方法, 制备含有这种HS-CAP分子印迹微粒的醋酸纤维素膜. 然后通过吸附实验检测该印迹膜的吸附特性, 与非印迹膜相比, 印迹膜对模板分子具有良好的特异性识别作用, 与印迹膜相互作用的模板分子溶液, 在作用前后浓度发生了显著的变化; 印迹膜对模板分子的识别作用主要集中于与模板分子相互作用的最初2 h之内, 并随作用时间的延长而降低; 当模板分子浓度介于0.2~0.0125 mg/mL这一范围内时, 模板分子溶液浓度越高, 印迹膜的吸附特性越明显. 本实验所制备的分子印迹聚合膜对模板分子具有特异性识别能力, 可以在下一步研制以分子印迹聚合膜为基础的检测氯霉素残留的传感设备中得到应用.  相似文献   
10.
为了解决饲料和动物产品中沙丁胺醇残留现场快速检测的难题,开发以分子印迹技术为基础的快速检测沙丁胺醇的新方法,使用沙丁胺醇做为模板分子,甲基丙烯酸(methacrylic acid, MA)作为功能单体,以本体聚合法为基础合成常规SAL分子印迹聚合物(molecularly imprinted polymer,MIPs)和非分子印迹聚合物(non imprinted polymer NIPs)。在此基础上,以胶体金粒子为引发核,制备出新型的核壳型沙丁胺醇MIPs。应用紫外吸收光谱(UV spectra)、傅里叶红外光谱(IR spectra)和拉曼光谱(Raman spectru)、扫描电镜(scanning electron microscopy,SEM)等技术手段获得两种印迹物及各种相关化合物的光谱图、电镜图等表征图像。由实验结果可知,SAL和MA上的羧基形成稳定又容易洗脱的1∶1型氢键配合物,化学结合常数K=-0.245×106 L2·mol-2。与MA的—COOH中氢原子形成氢键的可能结合位点是SALCO中的氧原子。MIPs与MA中—OH的吸收峰比较可知,前者明显红移; 证明SAL作为模板分子与MA之间发生特定结合。未洗脱MIPs的CO的伸缩振动产生的吸收峰红移; 即能量损失明显,可知MA中—COOH的氢原子如果要生成氢键,可能的结合位点就是SAL分子内CO中的氧原子。MIPs和NIPs中CC, CO, —OH等吸收明显的官能团峰型大致相同。将MIPs洗脱掉作为模板分子的SAL后,留下了含有特殊且确定结构官能团化学及空间构成均与SAL高度匹配的空穴, 可与待测液中的目标检测分子SAL发生特异性识别和专一结合作用。而胶体金核壳型MIPs与常规MIPs相比,除具有以上相同特点外,其表面更加松散,表面孔穴明显增多。由此增加了吸附目标分子的有效面积,具有更优良的吸附性能。这两种印迹物的合成及光谱特征分析为建立基于分子印迹技术的快速检测SAL新方法奠定了理论和实践基础。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号