首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2012年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
BisFe1-xCoxTi3O15 (x=0.0, 0.2, 0.4, 0.5, 0.6, and 0.8) multiferroic ceramics are synthesized in two steps using the solid state reaction technique. X-ray diffraction patterns show that the samples have four-layer Aurivillius phases. At room temperature (RT), the samples each present a remarkable coexistence of ferromagnetism (FM) and ferroelectricity (FE). The remnant polarization (2Pr) reaches its greatest value of 14 gC/cm2 at x = 0.6. Remnant magnetization (2Mr) first increases and then decreases, and the greatest 2Mr is 7.8 menu/g when x = 0.5. The magnetic properties for x = 0.4 are similar to those for x = 0.6, indicating that the magnetic properties originate mainly from the coupling between Fe3+ and Co3+ ions, rather than from their own magnetic moments.  相似文献   
2.
Bi5Fe1-xCoxTi3O15(x = 0.0, 0.2, 0.4, 0.5, 0.6, and 0.8) multiferroic ceramics are synthesized in two steps using the solid state reaction technique. X-ray diffraction patterns show that the samples have four-layer Aurivillius phases. At room temperature (RT), the samples each present a remarkable coexistence of ferromagnetism (FM) and ferroelectricity (FE). The remnant polarization (2P r ) reaches its greatest value of 14 μC/cm 2 at x = 0.6. Remnant magnetization (2M r ) first increases and then decreases, and the greatest 2M r is 7.8 menu/g when x = 0.5. The magnetic properties for x = 0.4 are similar to those for x = 0.6, indicating that the magnetic properties originate mainly from the coupling between Fe 3+ and Co 3+ ions, rather than from their own magnetic moments.  相似文献   
3.
杨文露  陈春燕  毛翔宇  陈小兵 《中国物理 B》2012,21(4):47502-047502
Bi5Fe1-xCoxTi3O15(x = 0.0, 0.2, 0.4, 0.5, 0.6, and 0.8) multiferroic ceramics are synthesized in two steps using the solid state reaction technique. X-ray diffraction patterns show that the samples have four-layer Aurivillius phases. At room temperature (RT), the samples each present a remarkable coexistence of ferromagnetism (FM) and ferroelectricity (FE). The remnant polarization (2P r ) reaches its greatest value of 14 μC/cm 2 at x = 0.6. Remnant magnetization (2M r ) first increases and then decreases, and the greatest 2M r is 7.8 menu/g when x = 0.5. The magnetic properties for x = 0.4 are similar to those for x = 0.6, indicating that the magnetic properties originate mainly from the coupling between Fe 3+ and Co 3+ ions, rather than from their own magnetic moments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号