首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2014年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in Ic was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.  相似文献   
2.
孙亚宾  付军  许军  王玉东  周卫  张伟  崔杰  李高庆  刘志弘 《物理学报》2013,62(19):196104-196104
对于相同制作工艺的NPN锗硅异质结双极晶体管(SiGe HBT), 在不同辐照剂量率下进行60Co γ射线的辐照效应与退火特性的研究. 测量结果表明, 两种辐照剂量率下, 随着辐照总剂量增加, 晶体管基极电流增大, 共发射极电流放大倍数降低, 且器件的辐照损伤、性能退化与辐照剂量率相关, 低剂量率下辐照损伤较高剂量率严重. 在经过与低剂量率辐照等时的退火后, 高剂量率下的辐照损伤仍较低剂量率下的损伤低, 即待测SiGeHBT具有明显的低剂量率损伤增强效应(ELDRS). 本文对相关的物理机理进行了探讨分析. 关键词: 锗硅异质结双极晶体管 低剂量率辐照损伤增强 辐照效应  相似文献   
3.
A study on the single event transient (SET) induced by a pulsed laser in a silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is presented in this work. The impacts of laser energy and collector load resistance on the SET are investigated in detail. The waveform, amplitude, and width of the SET pulse as well as collected charge are used to characterize the SET response. The experimental results are discussed in detail and it is demonstrated that the laser energy and load resistance significantly affect the SET in the SiGe HBT. Furthermore, the underlying physical mechanisms are analyzed and investigated, and a near-ideal exponential model is proposed for the first time to describe the discharge of laser-induced electrons via collector resistance to collector supply when both base-collector and collector-substrate junctions are reverse biased or weakly forward biased. Besides, it is found that an additional multi-path discharge would play an important role in the SET once the base-collector and collector-substrate junctions get strongly forward biased due to a strong transient step charge by the laser pulse.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号