首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学   1篇
物理学   7篇
  2013年   1篇
  2010年   1篇
  2006年   2篇
  2004年   2篇
  2002年   2篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
对雷达系统,通过在接收前端安置高Q、窄带、高带外抑制的滤波器,可以有效减少信号间的干扰,由此可见高性能的滤波器对于雷达系统来说,具有重要作用.与常规滤波器相比,高温超导滤波器具有带边陡峭、插入损耗小、带外抑制高、可以设计极窄带等特点.在本文中,我们设计加工了一种高性能的12阶切比雪夫(Chebyshev)高温超导带通滤波器,其中心频率为1341兆赫兹、带宽为5.035兆赫兹,可用于雷达系统.在滤波器设计中,我们用Sonnet软件对滤波器进行了仿真计算.最后滤波器在以氧化镁为衬底的双面超导薄膜上制作,衬底直径为2英寸、厚度为0.5毫米.测试结果表明,该滤波器符合设计要求,具有很好的选择性和带外抑制.  相似文献   
2.
本文评价了自行研制的气相色谱-表面声波(GC-SAW)联用快速分析仪的性能。实验结果表明:在6 s以内,GC-SAW快速分析仪能分离五种苯系物和C6~C14九种正构烷烃。该仪器对甲苯测定的相对标准偏差(RSD)为2.5%(n=6);最小检出浓度为2.05μg.L-3;线性范围为2.05~205μg.L-3;对标准样品连续6次分析,经双边t检验,分析结果均值与标样标准值无显著差异。  相似文献   
3.
声表面波气体传感器研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
基于声表面波技术的气体传感器包括采用敏感膜和结合气相色谱两种方式。比较而言,采用敏感膜的声表面波气体传感器体积小、功耗低,适应小型化毒气报警器的发展要求,但可检测的气体种类少、灵敏度低、存在交叉干扰问题;声表面波与气相色谱联用的气体分析仪灵敏度高、可检测气体种类多、很好地解决交叉干扰问题,特别适合于复杂大气背景条件下的气体成分分析。本文从传感器响应机理分析与物理功能结构两方面出发介绍了两类声表面波气体传感器的研究进展情况。  相似文献   
4.
高温超导移动电话基站子系统可以明显提高基站的性能,因此受到广泛的重视。我们利用一个高性能超导滤波器,低噪声放大器,脉冲管制冷机和有关的微波线路集成了一台完整的高温超导移动通讯基站子系统原理性样机。该子系统是针对DCS1800基站系统,频段为1710-1785MHz,系统增益为18dB,该子系统是国内研制成功的首台原理性样机。这表明对高温超导微波器件的应用研究已取得了阶段性的重要成果。性能更好的实用子系统样机正在研制中。  相似文献   
5.
研制了一种高选择性的24阶切比雪夫(Chebyshev)型高温超导带通滤波器,其中心频率为1748MHz、带宽为75MHz,适用于GSM移动通讯基站系统.此滤波器是在直径为3英寸、厚度为0.43毫米的铝酸镧双面超导薄膜上制作的.滤波器的计算机仿真是用Sonnet软件完成的.在滤波器设计中,提出了一种结构新颖的谐振器.在77K时,它具有很高的品质因子,约为30000.测试结果表明,该滤波器具有很好的选择性,带边陡度为17dB/MHz,带外抑制优于-90dB.  相似文献   
6.
一种结构紧凑的高温超导窄带带通滤波器   总被引:1,自引:0,他引:1  
研制了一种结构紧凑的高温超导窄带滤波器.该滤波器中心频率为,是在以0.5mm厚的LaAO3(εr≈24)为衬底的YBCO超导薄膜上制作的.测试结果显示该滤波器具有比较好的性能,其插入损耗<0.3dB,反射损耗<-16dB,相对带宽<9‰, 带边陡度>9dB/MHz, 中心频率误差<0.05%.滤波器设计中,利用特殊技术成功地改善了过渡带上的零点特性,为今后研制新型的结构紧凑的滤波器开拓了思路.  相似文献   
7.
利用高温超导体磁屏蔽原理研制了一种双面超导薄膜的临界参数无损测量系统。该系统有29个传感器,可以无损地测出双面薄膜中的任一面的临界参数(Tc、Jc)值。该系统用液氮冷却。可测量最大薄膜直径为75mm。全系统由计算机实现自动控制。  相似文献   
8.
一种结构新颖、边带陡峭的高温超导带阻滤波器   总被引:1,自引:0,他引:1  
研制了一种结构新颖的高温超导带阻滤波器.这种带阻滤波器的设计值为:中心频率,2.5GHz带内最大衰减65dB.而用YBCO薄膜制成的带阻滤波器实物经调谐,其中心频率与设计值相同,带内最大衰减为73dB,优于设计指标.该滤波器的主要优点是体积小、边带陡,而且可以与其他滤波器组合使用.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号