首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   53篇
  国内免费   51篇
化学   127篇
晶体学   4篇
力学   4篇
综合类   7篇
数学   16篇
物理学   100篇
  2024年   1篇
  2023年   3篇
  2022年   13篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   7篇
  2016年   7篇
  2015年   7篇
  2014年   17篇
  2013年   16篇
  2012年   10篇
  2011年   3篇
  2010年   11篇
  2009年   17篇
  2008年   9篇
  2007年   22篇
  2006年   10篇
  2005年   11篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   8篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1989年   3篇
  1986年   1篇
排序方式: 共有258条查询结果,搜索用时 312 毫秒
1.
陈莺飞  彭炜  李洁  陈珂  朱小红  王萍  曾光  郑东宁  李林 《物理学报》2003,52(10):2601-2606
在超高真空分子束外延(MBE)生长技术中,反射式高能电子衍射仪(RHEED)能实时显示半导体和金属外延生长过程,给出薄膜表面结构和平整度的信息,成为MBE必备的原位表面分 析仪.为了研究氧化物薄膜如高温超导(YBa2Cu3O7) 、铁电薄膜(Sr1-xBax TiO3)及它们的同质和异质外延结构的生长机理,获得高质量的符合各种应用 需要的氧化 物多层薄膜结构,在常规的制备氧化 关键词: 高温超导薄膜 RHEED  相似文献   
2.
用溶胶凝胶法,灼烧法合成了纳米级WO3,采用X-射线衍射、紫外可见漫反射光谱对WO3进行表征.在Fe3 为电子受体、溶液酸度pH为2.0情况下,研究了纳米级WO3在365nm紫外辐射下光解水析氧的光催化活性,并讨论了不同方法制备的催化剂活性差异的原因.结果表明,结晶程度越高、尺寸越小、比表面积越大的纳米级WO3具有更高的光分解水析氧活性,电子受体的浓度、溶液的酸度对析氧活性有明显的影响.  相似文献   
3.
以8-羟基喹啉为配体的金属配合物是一种性能优良的有机电致发光材料,其中有关8-羟基喹啉铝(Alq3)研究已有大量报道,8-羟基喹啉锌(Znq2)研究还有待发展。介绍了两种以Znq2为基体的新型有机电致发光材料Znq2(H2O)2和(Znq2)4的合成方法。用IR、XRD、TG、DTA和荧光测试方法进行表征与分析表明:Znq2(H2O)2和(Znq2)4的玻璃化温度(Tg)分别为104.2℃和204.9℃;在161℃下Znq2(H2O)2脱去水分子成为Znq2,在361℃高温下四聚体(Znq2)4裂解为单体Znq2;Znq2(H2O)2和(Znq2)4具有很好的发光性能,在光致发光谱中λmax分别是505,550nm。  相似文献   
4.
本文分析了等压实验中温度因素的影响和各种单独过程的平衡方程,理论研究得到了实验设备中的温度差和测定的平衡浓度误差的关系以及平衡方程,平衡方程也表明了各单独过程的平衡速度大小顺序为气相中的水蒸气扩散过程<气相中的水蒸气循环流动过程<试样溶液中热传导过程<热传导体中的热传导过程和试样溶液中由搅拌产生的热传递过程<溶质在溶液中的扩散过程<气液相之间的平衡过程和由压强差产生的气相的水蒸气对流过程.同时,研究表明总的平衡方程可以近似由dln|△me,b/m0|/dt=-k·mb2/(ma·wa)描述.此外研究也表明排除等压实验设备中的空气成分可以有效的加快总的平衡速度.并且实验容器与热传导体之间的接触也非常重要.  相似文献   
5.
消毒剂产品中三氯新的测定及其稳定性研究   总被引:9,自引:0,他引:9  
李洁  赵海燕  彭国克  田佩瑶  李长青 《色谱》2002,20(4):372-374
 采用反相高效液相法测定消毒剂产品中的三氯新。在KromasilC18柱 (2 0 0mm× 4 6mmi d )上 ,以甲醇 乙腈 水 (含 0 0 2mol/LKH2 PO4,pH 2 7) (体积比为 4 0∶4 0∶2 0 )溶液为流动相 ,2 80nm波长下检测 ,样品用流动相超声溶解。三氯新的回收率为 94 2 %~ 10 2 2 % ,相对标准偏差 (RSD)为 2 2 %~ 3 0 %。方法操作简便 ,精密度和准确度高 ,适合三氯新的快速分析。在 5 4℃时保存 14d和 37℃时保存 90d后 ,标准品和样品的含量没有明显变化 ,证明三氯新具有良好的稳定性。  相似文献   
6.
Cr掺杂对K2La2Ti3O10光催化活性的影响   总被引:1,自引:0,他引:1  
通过溶胶-凝胶法制备了层状钙钛矿结构的K2La2Ti3O10及Cr掺杂的K2La2Ti3O10,采用X-射线衍射(XRD)、紫外可见漫反射光谱(DRS)、X射线光电子能谱(XPS)等对K2La2Ti3O10及Cr掺杂K2La2Ti3O10进行了表征。以I-为电子给体、分别在紫外和可见光辐射下研究了K2La2Ti3O10及Cr掺杂K2La2Ti3O10光催化分解水的产氢活性。采用第一性原理,计算了Cr掺杂对K2La2Ti3O10半导体能带结构和态密度的影响,从电子结构的变化揭示了掺杂引起光催化活性差异的原因。结果表明,Cr的掺入能够改善和提高K2La2Ti3O10的光解水的产氢活性;Cr改善和提高K2La2Ti3O10的光解水的产氢活性存在一个最佳的掺杂浓度;当Cr与Ti的物质量的比为0.02∶1时,紫外光催化分解水产氢速率为1 500 μmol·L-1·h-1,可见光催化分解水产氢速率为83.6 μmol·L-1·h-1,分别为K2La2Ti3O10掺杂改性前产氢速率的26和5倍。  相似文献   
7.
利用表面等离子共振(SPR)光谱,结合分子印迹技术,制备了孔雀石绿分子印迹SPR传感器,建立了检测孔雀石绿的分析方法。探讨了pH值对分子印迹膜吸附特性的影响,并在最佳pH下对其吸附选择性进行了考察。研究结果表明,与相应非印迹传感膜相比,孔雀石绿印迹传感膜对孔雀石绿具有较高的吸附选择性能。该方法测定河水及河泥中孔雀绿的线性范围为8.0×10-10~1.0×10-8 mol/L,检出限(S/N=3)分别为8.83×10-11 mol/L和1.55×10-10 mol/L,平均回收率分别为91.97%和93.88%,相对标准偏差分别为1.2%和2.1%。该方法具有简单、快速、灵敏度高、重复性好等特点,适用于河水和河泥中孔雀石绿的测定。  相似文献   
8.
在管式炉反应器中进行了1种污泥定温燃烧试验,进行了5个不同燃烬率样品的液氮静态容量法等温物理吸附试验.发现不同燃烬率的污泥样品孔分布特性相似,其孔系统可能主要是由一端封闭的不透气的孔构成;随着燃烬率的增加,比表面积、平均孔径和孔体积等参数变化不同;样品颗粒内孔表面分形维数随燃烬率的增长呈先降低再升高的趋势.  相似文献   
9.
为了提高农作物的产量和质量,农药的使用量逐年增加,导致土壤、水和农作物等的污染加剧,对环境和人类健康造成了严重的威胁。因此,对于农药残留进行快速、灵敏的检测至关重要。近年来,多种用于农药残留快速检测的技术和产品被开发。该综述对多种识别方式在农药检测中的进展进行了介绍,包括以蛋白质和适配体为代表的生物识别、以纳米材料和大环化合物为代表的非生物识别以及基于农药独特的光学性质和化学性质实现的直接识别。最后对农药残留的快速检测进行了展望,以期为农药的即时监测(POCT)提供研究思路和方向。  相似文献   
10.
超高效液相色谱法检测化妆品中的12种磺胺抗生素   总被引:10,自引:0,他引:10  
郑和辉  王萍  李洁 《色谱》2007,25(2):238-240
建立了采用超高效液相色谱(UPLC)-二极管阵列检测器(PDA)测定化妆品中12种常见的磺胺抗生素(磺胺、磺胺间甲氧嘧啶、磺胺醋酰、磺胺甲基异唑、磺胺嘧啶、磺胺二甲异唑、磺胺噻唑、磺胺二甲氧嘧啶、磺胺甲基嘧啶、磺胺喹啉、磺胺二甲嘧啶、磺胺硝苯)的方法。采用Acquity UPLCTM BEHC C18 色谱柱(50 mm×2.1 mm, 1.7 μm),流动相为乙腈/0.1%的甲酸水溶液,梯度洗脱。样品经提取、反萃取后,用UPLC-PDA进行分析检测,结合保留时间和紫外光谱进行定性分析,定量检测波长268 nm。12种磺胺的检出限(S/N=3)均为1 μg/g,定量下限(S/N=10)为2~3 μg/g,在1~25 mg/L(磺胺硝苯为0.5~12.5 mg/L)范围内,峰面积和质量浓度的线性关系良好(r>0.9997)。添加水平为40, 8 μg(磺胺硝苯为20, 4 μg)时,12种磺胺的平均回收率分别为86.8%~98.1%和80.1%~96.9%,相对标准偏差小于10%(n=6)。结果表明该方法简单,分离效果好,速度快,能够满足检测化妆品中12种常见的磺胺抗生素的需要。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号