首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2012年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
曲遵世  王勇刚  刘杰  郑丽和  苏良碧  徐军 《中国物理 B》2012,21(6):64211-064211
We report on a diode-pumped passively continuous wave(cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube(DWCNT) absorber operating at a wavelength of 2023 nm for the first time,to the best our knowledge.The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique.The output power is as high as 375 mW.A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.  相似文献   
2.
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 p-m. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号