首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2022年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Qiu-Ling Qiu 《中国物理 B》2022,31(4):47103-047103
The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-light-emitting diodes (white LEDs), high electron mobility transistors (HEMTs), and GaN polarization superjunctions. However, the current researches on the polarization mechanism of GaN-based materials are not sufficient. In this paper, we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design (TCAD) simulation. The self-screening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively. We believe that the formation of high-density two-dimensional electron gas (2DEG) in GaN is the accumulation of screening charges. We also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.  相似文献   
2.
The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-SiNx gate dielectric.A higher overdrive voltage is more effective to accelerate the electrons trapping process,resulting in a unique trapping behavior,i.e.,a larger threshold voltage shift with a weaker time dependence and a weaker temperature dependence.Combining the degradation of electrical parameters with the frequency–conductance measurements,the unique trapping behavior is ascribed to the defect energy profile inside the gate dielectric changing with stress time,new interface/border traps with a broad distribution above the channel Fermi level are introduced by high overdrive voltage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号