首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   6篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
针对遥感图像及彩色图像传输过程中的信息安全问题,提出了一种利用矢量运算和副像相位掩模对彩色遥感图像加密的方法.在加密过程中,利用光学相干叠加原理将原始图像矢量分解,并叠加到R、G、B三个通道上的两个相位板当中;然后,使用副像相位掩模在菲涅尔域中双随机相位编码对其中一个相位板加密;最后,利用两个随机矩阵的Kronecker积对编码图像进行进一步随机化处理,实现彩色遥感图像的多级加密.实验结果表明:该算法的密钥敏感度高,在强度系数小于0.04的高斯噪声攻击和统计分析攻击下具有良好的稳健性;密文能够抵御选择明文攻击,相比于传统的双随机相位编码算法具有更强的安全性.解密遥感图像的峰值信噪比和相关系数可达31.92dB和0.9888.该加密方法为大量相同尺寸遥感图像的加密提供了新的思路.  相似文献   
2.
针对光学变换水印算法中光学实现的轴对准问题和光学密码系统的安全性问题,提出一种基于超混沌映射和Gyrator变换的光学水印方法。利用Chen 4D超混沌系统构造超混沌相位掩模,然后通过菲涅耳波带板和径向希尔伯特掩模构造的涡旋光,对超混沌相位板进行照明,最后借助Gyrator变换将加密后的水印图像植入宿主灰度图像,实现Gyrator变换域下的光学信息隐藏。通过Gyrator逆变换提取目标图像中植入的水印信息。实验结果表明,该算法能够从高不可感知性的目标图像中提取高质量的水印信息,加密的目标图像信噪比高,与宿主图像的相关性强,能够有效地抵御强度系数为0.06和0.8的椒盐噪声和高斯噪声的攻击,对低于50%遮挡率和80压缩因子的攻击具有良好的稳健性。加密后的目标图像与原始宿主图像具有相似的统计分布,较好地实现了信息隐藏。  相似文献   
3.
光场相机通过在主镜组和传感器间特定位置设置微透镜阵列,在采集物方光强的同时可记录光线方向。提出一种在频域内对光场相机获取的四维光场图像加密的图像数字水印方法。植入信息经Base64编码后生成二维图像,并通过Aronld迭代对此图像进行均匀化处理,建立与原始光场坐标系匹配的虚拟计算光场,在四维傅里叶域内以切片替换的方式将加密信息植入原始光场中,实现光场图像加密,然后,基于二者坐标对应关系,应用傅里叶逆变换提取加密光场图像中的植入信息。搭建光场采集系统,应用本文方法对采集的原始光场图像进行加密处理。实验结果表明,加密光场图像信噪比高,与原始光场图像相关性强,加密光场图像无明显伪迹和失真,算法简便快捷,稳定可靠。  相似文献   
4.
建立了扇形无漏光聚光系统,对其几何聚光比与抛物线系数、聚光模组后抛物面宽度及聚光模组数量之间的相互关系进行了研究。针对光线耦合结构阵列后导致的漏光问题,提出了锯齿型无漏光波导板的设计方法,在提高聚光比的同时获得较高的聚光效率。通过分析太阳运行规律,提出可传动棱镜片组的设计以取代传统双轴跟踪方式,在一定意义上实现单轴追踪,降低系统运行功耗。在考虑菲涅耳损失以及材料吸收情况下,利用LightTools软件对所设计的聚光系统进行光线追迹,结果表明:在抛物线系数a=0.019时,几何聚光比达到1900,聚光效率为65.1%;在抛物线系数a=0.032时,几何聚光比达到1110,聚光效率达到约82.3%。  相似文献   
5.
针对室内可见光通信中光学天线存在的视场小、接收面光能分布不均匀,以及低功率光源条件下接收功率低的问题,设计了作为可见光通信系统光学天线的平板型聚光器,推导出适用于平板型聚光系统的光学增益理论公式。在一个(5×5×3)m房间中对平板型聚光器作为光学天线的接收功率分布进行仿真,得到直射和非直射链路信道下视场角为50°的平板型聚光器接收房间内各位置的光功率比直接探测时分别提升了16.2411dBm和16.4956dBm。  相似文献   
6.
针对平板型太阳能聚光器中出现的漏光问题,提出了无漏光聚光器的设计方法.该方法结合简单的数学计算与折射定律、反射定律推导出光线在光波导板中无漏光传播的最大距离理论公式,建立了无漏光聚光比与空气隙结构张角角度、主聚光器高度和宽度之间的数学模型,利用控制变量法分析了无漏光聚光比与各参数之间的关系.运用光线追迹软件对所设计的平板型无漏光太阳能聚光器进行光线追迹模拟,结果表明:在模拟光源选择存在0.27°的发散半角的太阳光源条件下,考虑光线在透射面处的菲涅耳损失和光学材料的吸收,在无漏光范围内实际最大聚光比达到698×、857×和1 032×时的聚光效率分别为88.2%、85.3%和80.2%;超过无漏光范围后随着聚光比进一步增大聚光效率下降较平缓.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号