首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
物理学   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
吕超甲  刘雷  高阳  刘红  易丽  庄春强  李营  杜建国 《中国物理 B》2017,26(6):67401-067401
Phase H(MgSiO_4H_2), one of the dense hydrous magnesium silicates(DHMSs), is supposed to be vital to transporting water into the lower mantle. Here the crystal structure, elasticity and Raman vibrational properties of the two possible structures of phase H with Pm and P2/m symmetry under high pressures are evaluated by first-principles simulations. The cell parameters, elastic and Raman vibrational properties of the Pm symmetry become the same as the P2/m symmetry at~ 30 GPa. The symmetrization of hydrogen bonds of the Pm symmetry at ~ 30 GPa results in this structural transformation from Pm to P2/m. Seismic wave velocities of phase H are calculated in a range from 0 GPa to 100 GPa and the results testify the existence and stability of phase H in the lower mantle. The azimuthal anisotropies for phase H are A_(P0)= 14.7%,A_(S0)= 21.2%(P2/m symmetry) and A_(P0)= 16.4%, A_(S0)= 27.1%(Pm symmetry) at 0 GPa, and increase to A_(P30)= 17.9%,A_(S30)= 40.0%(P2/m symmetry) and A_(P30)= 19.2%, A_(S30)= 37.8%(Pm symmetry) at 30 GPa. The maximum V P direction for phase H is [101] and the minimum direction is [110]. The anisotropic results of seismic wave velocities imply that phase H might be a source of seismic anisotropy in the lower mantle. Furthermore, Raman vibrational modes are analyzed to figure out the effect of symmetrization of hydrogen bonds on Raman vibrational pattern and the dependence of Raman spectrum on pressure. Our results may lead to an in-depth understanding of the stability of phase H in the mantle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号