首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   7篇
物理学   11篇
  2016年   2篇
  2011年   1篇
  2010年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.  相似文献   
2.
An alternative scheme is proposed for generating the Greenberg-Horne-Zeilinger (GHZ) and W types of the entangled states with multiple superconducting quantum-interference device (SQUID) qubits in a single-mode microwave cavity field. In this scheme, there is no transfer of quantum information between the SQUIDs and the cavity, the cavity is always in the vacuum and thus the requirement on the quality of cavity is greatly loosened. In addition, during the process of the generation of the W entangled state, the present method does not involve a real excitation of intermediate levels. Thus, decoherence due to energy relaxation of intermediate levels is minimized.  相似文献   
3.
We study the generation and evolution of continuous-variable entanglement in a holographic laser. The two-level atomic medium is trapped in a ring cavity, and couples with two counter-propagating modes. By simulating the dynamics of the system, our numerical results show that the two-mode continuous variable (CV) entanglement can be realized in the present system even in the presence of cavity loss. This investigation provides a research clue for realizing CV entanglement in a two-level atomic medium, which is simpler than the previous works.  相似文献   
4.
We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It is found that the geometric phase is induced by a counterpart of the Stark shift. This effect is due to distinct shifts in the field frequency induced by interaction between different states (|e〉 and |g〉 ) and cavity field, and a simple geometric interpretation of this phenomenon is given, which is helpful to understand the natural origin of the geometric phase.  相似文献   
5.
宋佩君  吕新友  司留刚  杨晓雪 《中国物理 B》2011,20(5):50308-050308
We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms.In the present schemes,the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres.Performing an adiabatic passage along dark states,the population of cavities and fibres excited is negligible under certain conditions.In addition,the spontaneous decay of atoms is also efficiently suppressed based on our proposals.Furthermore,the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters.  相似文献   
6.
转动惯量是描述刚体转动惯性量度的重要物理量, 它具有重要的物理意义. 本文利用一种双悬扭摆的 实验装置来对物体的转动惯量进行实验研究以及对平行轴定理进行实验验证  相似文献   
7.
An analytical method based on four-wave mixing (FWM) is here developed to study the generation of entangled state in an asymmetric semiconductor double quantum well structure. It is found that the maximally entangled state of two beams (the probe and four-wave mixing beams) can be achieved in an appropriate condition. Moreover, we also show that the two entangled beams propagate with ultraslow group velocity in the semiconductor medium. This investigation can be used for achieving the entangled beams in the semiconductor solid-state medium, which is much more practical than that in an atomic medium because of its flexible design and the wide adjustable parameters.  相似文献   
8.
宋佩君  吕新友  刘继兵  郝向英 《中国物理 B》2010,19(5):50503-050503
By using a two-mode mean-field approximation,we study the dynamics of the microcavities containing semiconductor quantum wells.The exact analytical solutions are obtained in this study.Based on these solutions,we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition.  相似文献   
9.
We propose an alternative scheme to prepare W state by using superconducting quantum-interference devices (SQUIDs) coupled to a largely-detuned cavity. The present scheme is based on evolution by adiabatic passage, where only by tuning adiabatically the Rabi frequencies of the classical microwave pulses we can obtain the standard W state without measurement or any auxiliary SQUIDs. Thus the procedure is simplified and the scheme can be achieved with very high success probability since the errors in dynamical or geometric ways can be avoided. In addition, the SQUID system and the cavity have no probability of being excited state. Thus decoherence caused by the excited-level spontaneous emission or the cavity decay is suppressed.  相似文献   
10.
An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号