首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
化学   1篇
物理学   6篇
  2011年   6篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
用高温固相法合成了用于白光LED的Na2Ca4(1-x-y)(PO4)2SiO4:xEu3+,yBi3+红色荧光粉.研究了助熔剂H3BO3、二次煅烧时间和稀土掺杂量等制备条件对样品发光性质的影响.结果表明,在1 200℃、助熔剂H3BO3加入量为样品质量的3.8%时可得到更有利于发光的α-NCPS基质,而且掺入Eu3+...  相似文献   
2.
用高温固相法合成了用于白光LED的Na2Ca4(1-x-y)(PO4)2SiO4:xEu3+,yBi3+红色荧光粉.研究了助熔剂H3BO3、二次煅烧时间和稀土掺杂量等制备条件对样品发光性质的影响.结果表明,在1 200℃、助熔剂H3BO3加入量为样品质量的3.8%时可得到更有利于发光的α-NCPS基质,而且掺入Eu3+、Bi3+之后,基质的晶格结构没有发生明显变化;适宜的二次煅烧时间为1.5 h.Bi3+的共掺杂可以通过能量传递大幅提高Eu3+的发光强度,当Eu3+、Bi3+的摩尔分数分别为x=0.04和y=0.01时,粉体具有最强的红光发射.表明这种荧光粉是一种可很好用于近紫外芯片的白光LED的红色荧光粉.  相似文献   
3.
In2O3:H03+,Yb3+纳米晶的制备与上转换发光   总被引:1,自引:1,他引:0       下载免费PDF全文
以乙二醇为溶剂,采用低温溶剂热法制备了H03+/Yb3+共掺杂In2O3纳米晶.利用X射线晶体衍射 (XRD)、透射电子显微镜(TEM)对粒子的结构和形貌进行表征,结果表明,合成的样品为纯的立方相In2O3,颗粒尺寸约为30nm.通过上转换发光(UCL)光谱研究了粒子的上转换发光性质,在980nm半导体激光激 发下...  相似文献   
4.
在还原气氛下采用高温固相法制备了Li2SrSiO4:Eu2+,Nd3+发光材料,测量了它们的可见和近红外激发光谱和发射光谱及Eu2+的荧光寿命,研究了Eu2+和Nd3+掺入对其发光性质的影响。结果表明,当Eu2+的浓度为0.01,Nd3+的浓度为0.05时,样品的近红外发光强度最强;Eu2+的发射光谱和Nd3+激发光谱之间的光谱交叠范围较大,Eu2+和Nd3+之间存在着高效无辐射能量传递,能量传递效率约为55.7%,Eu2+的掺入可显著地敏化Nd3+的近红外发光。  相似文献   
5.
以乙二醇为溶剂,采用低温溶剂热法制备了H03+/Yb3+共掺杂In2O3纳米晶.利用X射线晶体衍射 (XRD)、透射电子显微镜(TEM)对粒子的结构和形貌进行表征,结果表明,合成的样品为纯的立方相In2O3,颗粒尺寸约为30nm.通过上转换发光(UCL)光谱研究了粒子的上转换发光性质,在980nm半导体激光激 发下,In2O3:H03+,Yb3+纳米晶发射出强的绿色和弱的红色上转换发光,分别归属于H03+离子(5 F4,5S2)→5I8 和5F5→5I8跃迁.研究了不同H03+和yb3+离子掺杂浓度对上转换发光性能的影响,确定了H03+和yb3+最 佳掺杂摩尔分数分别为3%和4%.双对数曲线显示,绿光和红光的发射过程均为双光子吸收过程.对样品 的上转换发光机制进行了初步讨论.  相似文献   
6.
采用高温固相法制备了新型N a2SrS iO4:C e3+,Tb3+,Yb3+的近红外发光材料。对样品可见和近红外激发光谱、发射光谱及荧光寿命的研究表明,N a2SrS iO4:C e3+,Tb3+,Yb3+中存在高效的Tb3+→Yb3+的量子剪裁下转换效应,下转换量子效率约为182.4%。Ce3+的共掺大大提高了样品的紫外光吸收,显著敏化了样品的近红外发光效率。研究了Ce3+,Tb3+和Yb3+掺入量对其发光性质的影响。结果表明,当Ce3+的浓度为2%,Tb3+的浓度为13%和Y b3+的浓度为16%时,样品的近红外发光最强。  相似文献   
7.
采用高温固相法制备了新型Na2SrSiO4∶Ce3+,Tb3+,Yb3+的近红外发光材料.对样品可见和近红外激发光谱、发射光谱及荧光寿命的研究表明,Na2SrSiO4∶Ce3+,Tb3+,Yb3+中存在高效的Tb3+→Yb3+的量子剪裁下转换效应,下转换量子效率约为182.4%.Ce3+的共掺大大提高了样品的紫外光吸收,显著敏化了样品的近红外发光效率.研究了Ce3+,Tb3+和Yb3+掺入量对其发光性质的影响.结果表明,当Ce3+的浓度为2%,Tb3+的浓度为13%和Yb3+的浓度为16%时,样品的近红外发光最强.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号