首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
化学   43篇
晶体学   2篇
数学   5篇
物理学   7篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2002年   2篇
排序方式: 共有57条查询结果,搜索用时 0 毫秒
1.
4,4-Bis(chloroacetyl)diphenylmethane has been prepared from ClCH2COCl and Ph2CH2. 4,4-Methylenebis(phenylglyoxylohydroximoyl chloride has also been obtained. Four new substituted 4,4-bis(alkylaminoisonitrosoacetyl)diphenylmethanes (ligands) have been prepared from 4,4-methylenebis(phenylglyoxylohydroximoyl chloride) and the corresponding amines. The NiII, CuII and CoII complexes of these ligands were prepared and their structures were identified using AAS, i.r., 1H-n.m.r. spectral data, elemental analyses and magnetic susceptibility measurements.  相似文献   
2.
New epoxy resins were prepared from hydroxyl substituted Schiff base monomers in two steps. The first step is based on the synthesis of hydroxyl substituted Schiff base monomers via condensation reaction. The second step includes the reaction between Schiff base monomers with epichlorohydrine (EPC) to obtain epoxy resins. The structures of resulting compounds were confirmed by FTIR and 1H-NMR. TG-DTA and DSC measurements were made for thermal characterizations of the compounds. Chemical resistances of the cured epoxy-amine systems in acidic, alkaline and organic solvents were determined for coating applications. HCl (aqueous solution, 10%), NaOH (aqueous solution, 10%), DMSO, DMF, N-methylpyrrolidone, ethanol, THF and acetone were used for corrosion tests. Chemical resistance data show that the synthesized resins have good chemical resistance against various acid, alkaline and common organic solvents.  相似文献   
3.
In this study, the reaction conditions of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) were studied by using oxidants such as air O2, H2O2 and NaOCl in an aqueous alkaline medium between 50 and 90 °C. The structures of the synthesized monomer and polymer were confirmed by FT-IR, UV-vis, NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) was found to be 20% (for air O2 oxidant), 33% (for H2O2 oxidant), and 74% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-2-MPIMP were found to be 3300, 4100 g mol−1 and 1.242, using H2O2, and 4550, 5150 g mol−1and 1.132, using air O2 and 5300, 5850 g mol−1 and 1.104, using NaOCl, respectively. According to TG analysis, the weight losses of 4-[(2-methylphenyl)iminomethyl]phenol (2-MPIMP) and P-2-MPIMP were found to be between 75.29% and 48.17% at 1000 °C, respectively. P-2-MPIMP was shown to have a higher stability against thermal decomposition. Also, electrical conductivity of the P-2-MPIMP was measured, showing that the polymer is a typical semiconductor. Electrochemically, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and electrochemical energy gaps ( of 2-MPIMP and P-2-MPIMP were found to be −6.01, −6.03; −2.63, −2.82; 3.38 and 3.21 eV, respectively. According to UV-vis measurements, the optical band gap (Eg) of 2-MPIMP and P-2-MPIMP was found to be 3.40 and 2.97 eV, respectively.  相似文献   
4.
Catalytic oxidative polymerization of 2,2′‐dihydroxybiphenyl (DHBP) was performed by using both the Schiff base monomer‐Cu(II) complex and Schiff base polymer‐Cu(II) complex compounds as catalysts and hydrogen peroxide as oxidant, respectively. The dependence of monomer conversion and molecular weight distribution on various reaction parameters, including time, temperature, solvent as well as the amount of catalyst and oxidant were investigated. The structure of the poly‐2,2′‐dihydroxybiphenyl (PDHBP) was confirmed by UV‐vis, IR, 1H and 13C NMR spectroscopy techniques. The electrochemical and thermal properties of PDHBP were also studied. DSC data revealed that PDHBP was amorphous. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2977–2984, 2009  相似文献   
5.
The epoxy resins containing imine bonding were prepared from hydroxyl substituted Schiff base monomers in two steps. At the first step, hydroxyl substituted Schiff base monomers were synthesized via condensation reaction. At the second step, epoxy resins were synthesized from the reaction between Schiff base monomers and epichlorohydrine (EPC). Then curing processes of epoxy resins were achieved by p-phenylenediamine compound. The structures of resulting compounds were confirmed by FT-IR, UV-Vis and 1H-NMR. TG-DTA and DSC measurements were performed for thermal characterizations of the compounds. Chemical resistances of the cured epoxy-amine systems were determined for coating applications in acidic, alkaline and organic solvents. HCl (10%, aqueous solution), NaOH (10%, aqueous solution), DMSO, DMF, N-methylpyrrolidone, ethanol, THF and acetone were used for corrosion tests. Chemical resistance data of the synthesized epoxy resins demonstrated that they have good chemical resistance against various acid, alkaline and common organic solvents. Surface morphologies of epoxy resin and the cured epoxy resin were determined with scanning electron microscopy (SEM) measurements. Also, optical band gap (Eg) values of Schiff base monomers and epoxy resins were calculated from UV-Vis measurements.  相似文献   
6.
Schiff base oligomer of 2-[(4-fluorophenyl) imino methylene] phenol (FPIMP) was synthesized via oxidative polycondensation reaction in an alkaline medium. Oligomer-metal complex compounds were synthesized from the reactions of oligo-2-[(4-fluorophenyl) imino methylene] phenol (OFPIMP) with Co+2, Ni+2 and Cu+2 ions. The synthesis was achieved by oxidative coupling based on air oxygen as an oxidant. While synthesized Schiff base oligomer was soluble in most common organic solvents, its metal complexes were only soluble in dimethylsulfoxide. Electrochemical HOMO and LUMO band gap (Eg) of monomer, oligomer and its metal complexes were calculated from oxidation and reduction onset values. According to cyclic voltammetry (CV) and UV-vis measurements, electrochemical energy gaps and optical band gap (Eg) values of monomer and oligomer were found to be 3.26 and 3.10; 3.15 and 2.96 eV, respectively. Conductivity measurements of doped and undoped Schiff base oligomer and its metal complexes were carried out by electrometer at a room temperature and atmospheric pressure and were calculated from four-point probe technique. When iodine was used as doping agent, conductivity of this oligomer and its metal complexes were observed to be increased.  相似文献   
7.
The reaction conditions of the oxidative polycondensation of 2‐[(pyridine‐2‐yl‐methylene) amino] phenol (2‐PMAP) with air O2, H2O2, and NaOCl were studied in an aqueous alkaline medium between 60 and 90 °C. Oligo‐2‐[(pyridine‐2‐yl‐methylene) amino] phenol (O‐2‐PMAP) was characterized with 1H NMR, Fourier transform infrared, ultraviolet–visible, size exclusion chromatography (SEC), and elemental analysis techniques. Moreover, solubility testing of the oligomer was performed in polar and nonpolar organic solvents. With the NaOCl, H2O2, and air O2 oxidants, the conversions of 2‐PMAP into O‐2‐PMAP were 98, 87, and 62%, respectively, in an aqueous alkaline medium. According to SEC, the number‐average molecular weight, weight‐average molecular weight, and polydispersity index of O‐2‐PMAP were 2262 g mol?1, 2809 g mol?1, and 1.24 with NaOCl, 3045 g mol?1, 3861 g mol?1, and 1.27 with air O2, and 1427 g mol?1, 1648 g mol?1, and 1.16 with air H2O2, respectively. Also, thermogravimetric analysis showed that O‐2‐PMAP was stable against thermooxidative decomposition. The weight loss of O‐2‐PMAP was 96.68% at 900 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2717–2724, 2004  相似文献   
8.
The oxidative polycondensation reaction conditions of 4-[(4-hydroxybenzylidene)amino]phenol(4-HBAP)were studied with H_2O_2,air oxygen and NaOCl in an aqueous alkaline medium between 50 and 90℃.The structures of the obtained monomer and polymer were confirmed by FT-IR,UV-Vis,~1H-and ~(13)C-NMR and elemental analysis.The characterization was made by TG-DTA,size exclusion chromatography(SEC)and solubility tests.At the optimum reaction conditions,the yield of poly[4-(4-hydroxybenzylidene amino)phenol](P-4-HBAP)was found to be 48.3%(for H_2O_2 oxidant),80.5%(for air O_2 oxidant)and 86.4%(for NaOCl oxidant).According to the SEC analysis,the number-average molecular weight(M_n),weight-average molecular weight(M_w)and polydispersity index(PDI)values of P-4-HBAP was found to be 8950,10970 g mol~(-1) and 1.225,respectively,using H_2O_2;and 11610,15190 g mol~(-1) and 1.308 respectively, using air O_2 and 7900,9610 g mol~(-1) and 1.216,respectively,using NaOCl.According to TG-DTA analyses,P-4-HBAP was more stable than 4-HBAP against thermal decomposition.The weight loss of P-4-HBAP was found to be 49.27% at 1000℃. The highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)values calculated from electrochemical measurement.Electrochemical energy gaps(E′_g)of 4-HBAP and P-4-HBAP were found to be-5.46, -5.28;-2.26,-2.67;3.20 and 2.61 eV,respectively.According to UV-Vis measurements,optical band gap(E_g)of 4-HBAP and P-4-HBAP were found to be 3.34 and 3.01 eV,respectively.Also,antimicrobial activities of 4-HBAP and P-4-HBAP were examined against selected some bacteria.The electrical conductivity of the polymer was measured after doping with iodine.  相似文献   
9.
In this study, the oxidative polycondensation reaction conditions of 2-[(4-fluorophenyl) imino methylene] phenol (FPIMP) with air oxygen and NaOCl were studied in an aqueous alkaline medium between 60 and 90 °C. Synthesized oligo-2-[(4-fluorophenyl) imino methylene] phenol was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. The yield of oligo-2-[(4-fluorophenyl) imino methylene] phenol (OFPIMP) was found to be 62.00% (for air O2 oxidant) and 97.70% (for NaOCl oxidant) at the optimum reaction conditions. According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of OFPIMP were found to be 1370 g mol−1, 1979 g mol−1 and 1.45, using NaOCl, 2105 g mol−1, 2557 g mol−1, and 1.22, using air O2, respectively. During the oxidative polycondensation reaction, (2.88%) a part of -CHN group oxidized to carboxylic acid (-COOH). TG and TG-DTA analyses were shown to be more stable of oligo-2-[(4-fluorophenyl) imino methylene] phenol and its oligomer metal complexes than monomer against thermo-oxidative decomposition. The weight loss of OFPIMP was found to be 97.00% at 900 °C. The weight losses of OFPIMP-Co, OFPIMP-Ni OFPIMP-Cu oligomer-metal complex compounds were found to be 88.66%, 94.36% and 83.21%, respectively, at 1000 °C.  相似文献   
10.
In this study, firstly, two single substitute novel ligands have been synthesized by reacting melamine with 3,4,-dihydroxybenzaldeyhde or 4-carboxybenzaldehyde. Then, eight new mono nuclear single substitute [Salen/Salophen Fe(III) and Cr(III)] complexes have been synthesized by reacting the ligands [2-(3,4-dihydroxybenzimino)-4,6-diamimo-1,3,5-triazine and 2-(4-carboxybenzimino)-4,6-diamimo-1,3,5-triazine)] with tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophen H2). And then, all ligands and complexes have been characterized by means of elementel analysis, FT-IR spectroscopy, 1H NMR, LC–MS, thermal analyses and magnetic suscebtibility measurements. Finally, metal ratios of the prepared complexes were determined using AAS. The complexes have also been characterized as disorted octahedral low-spin Fe(III) and Cr(III) bridged by catechol and COO? groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号