首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   1篇
数学   14篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and ${\mathcal{A}}$ is a positive C 1(0,1] function which is regularly varying at zero with index ${\vartheta}$ in (2?N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if ${\Phi\not\in L^q(B_1(0))}$ , where ${\Phi}$ denotes the fundamental solution of ${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$ in ${\mathcal D'(B_1(0))}$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of all positive solutions in the more delicate case that ${\Phi\in L^q(B_1(0))}$ . We also establish the existence of positive solutions in all the categories of such a classification. Our results apply in particular to the model case ${\mathcal{A}(|x|)=|x|^\vartheta}$ with ${\vartheta\in (2-N,2)}$ .  相似文献   
3.
We consider the Monge–Ampère equation det D 2 u = b(x)f(u) > 0 in Ω, subject to the singular boundary condition u = ∞ on ?Ω. We assume that \(b\in C^\infty(\overline{\Omega})\) is positive in Ω and non-negative on ?Ω. Under suitable conditions on f, we establish the existence of positive strictly convex solutions if Ω is a smooth strictly convex, bounded domain in \({\mathbb R}^N\) with N ≥ 2. We give asymptotic estimates of the behaviour of such solutions near ?Ω and a uniqueness result when the variation of f at ∞ is regular of index q greater than N (that is, \(\lim_{u\to \infty} f(\lambda u)/f(u)=\lambda^q\) , for every λ > 0). Using regular variation theory, we treat both cases: b > 0 on ?Ω and \(b\equiv 0\) on ?Ω.  相似文献   
4.
Let Ω be a smooth bounded domain in RN. Assume fC1[0,∞) is a non-negative function such that f(u)/u is increasing on (0,∞). Let a be a real number and let b?0, b/≡0 be a continuous function such that b≡0 on . We study the logistic equation Δu+au=b(x)f(u) in Ω. The special feature of this work is the uniqueness of positive solutions blowing-up on , in a general setting that arises in probability theory. To cite this article: F.-C. C??rstea, V. R?dulescu, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 447–452.  相似文献   
5.
This paper studies the asymptotic behavior near the boundary for large solutions of the semilinear equation Δu + au = b(x)f(u) in a smooth bounded domain Ω of ℝN with N ≥ 2, where a is a real parameter and b is a nonnegative smooth function on . We assume that f(u) behaves like u(ln u)α as u → ∞, for some α > 2. It turns out that this case is more difficult to handle than those where f(u) grows like u p (p > 1) or faster at infinity. Under suitable conditions on the weight function b(x), which may vanish on ∂Ω, we obtain the first order expansion of the large solutions near the boundary. We also obtain some uniqueness results. Research of both authors supported by the Australian Research Council.  相似文献   
6.
We classify all the possible asymptotic behavior at the origin for positive solutions of quasilinear elliptic equations of the form div(|∇u|p−2u)=b(x)h(u) in Ω?{0}, where 1<p?N and Ω is an open subset of RN with 0∈Ω. Our main result provides a sharp extension of a well-known theorem of Friedman and Véron for h(u)=uq and b(x)≡1, and a recent result of the authors for p=2 and b(x)≡1. We assume that the function h is regularly varying at ∞ with index q (that is, limt→∞h(λt)/h(t)=λq for every λ>0) and the weight function b(x) behaves near the origin as a function b0(|x|) varying regularly at zero with index θ greater than −p. This condition includes b(x)=θ|x| and some of its perturbations, for instance, b(x)=θ|x|m(−log|x|) for any mR. Our approach makes use of the theory of regular variation and a new perturbation method for constructing sub- and super-solutions.  相似文献   
7.
Let Ω be a smooth bounded domain in RN. Assume that f?0 is a C1-function on [0,∞) such that f(u)/u is increasing on (0,+∞). Let a be a real number and let b?0, b?0 be a continuous function such that b≡0 on . The purpose of this Note is to establish the asymptotic behaviour of the unique positive solution of the logistic problem Δu+au=b(x)f(u) in Ω, subject to the singular boundary condition u(x)→+∞ as dist(x,?Ω)→0. Our analysis is based on the Karamata regular variation theory. To cite this article: F.-C. Cîrstea, V. R?dulescu, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   
8.
We consider the semilinear elliptic equation Δu=h(u) in Ω{0}, where Ω is an open subset of (N2) containing the origin and h is locally Lipschitz continuous on [0,∞), positive in (0,∞). We give a complete classification of isolated singularities of positive solutions when h varies regularly at infinity of index q(1,CN) (that is, limu→∞h(λu)/h(u)=λq, for every λ>0), where CN denotes either N/(N−2) if N3 or ∞ if N=2. Our result extends a well-known theorem of Véron for the case h(u)=uq.  相似文献   
9.
10.
We consider a singular anisotropic quasilinear problem with Dirichlet boundary condition and we establish two sufficient conditions for the uniqueness of the solution, provided such a solution exists. The proofs use elementary tools and they are based on a general comparison lemma combined with the generalized mean value theorem. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号