首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
数学   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 46 毫秒
1
1.

We consider a restricted four-body problem, with a precise hierarchy between the bodies: two larger bodies and a smaller one, all three of oblate shape, and a fourth, infinitesimal body, in the neighborhood of the smaller of the three bodies. The three heavy bodies are assumed to move in a plane under their mutual gravity, and the fourth body to move in the three-dimensional space under the gravitational influence of the three heavy bodies, but without affecting them. We first find that the triangular central configuration of the three heavy oblate bodies is a scalene triangle (rather than an equilateral triangle as in the point mass case). Then, assuming that these three bodies are in such a central configuration, we perform a Hill approximation of the equations of motion describing the dynamics of the infinitesimal body in a neighborhood of the smaller body. Through the use of Hill’s variables and a limiting procedure, this approximation amounts to sending the two larger bodies to infinity. Finally, for the Hill approximation, we find the equilibrium points for the motion of the infinitesimal body and determine their stability. As a motivating example, we identify the three heavy bodies with the Sun, Jupiter, and the Jupiter’s Trojan asteroid Hektor, which are assumed to move in a triangular central configuration. Then, we consider the dynamics of Hektor’s moonlet Skamandrios.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号