首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   6篇
化学   44篇
力学   4篇
数学   4篇
物理学   6篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1984年   1篇
  1983年   1篇
  1939年   1篇
  1938年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
2.
3.
A library of novel dipeptide-analogue ligands based on the combination of tert-butoxycarbonyl(N-Boc)-protected alpha-amino acids and chiral vicinal amino alcohols were prepared. These highly modular ligands were combined with [[RuCl(2)(p-cymene)](2)] and the resulting metal complexes were screened as catalysts for the enantioselective reduction of acetophenone under transfer hydrogenation conditions using 2-propanol as the hydrogen donor. Excellent enantioselectivity of 1-phenylethanol (up to 98 % ee) was achieved with several of the novel catalysts. Although most of the ligands contained two stereocenters, it was demonstrated that the absolute configuration of the product alcohol was determined by the configuration of the amino acid part of the ligand. Employing ligands based on L-amino acids generated S-configured products, and catalysts based on D-amino acids favored the formation of the R-configured alcohol. The combination N-Boc-L-alanine and (R)-phenylglycinol (Boc-L-Ab) or its enantiomer (N-Boc-D-alanine and (S)-phenylglycinol, Boc-D-Aa) proved to be the best ligands for the reduction process. Transfer hydrogenation of a number of aryl alkyl ketones were evaluated and excellent enantioselectivity, up to 96 % ee, was obtained.  相似文献   
4.
5.
The direct formation of alpha-methylene-beta-amino acid derivatives is achieved using the aza version of the Baylis-Hillman protocol. The products are readily formed in a three-component one-pot reaction between arylaldehydes, sulfonamides, and alpha,beta-unsaturated carbonyl compounds. The reaction is efficiently catalyzed by titanium isopropoxide and 2-hydroxyquinuclidine in the presence of molecular sieves. The protocol allows for structural variation of the substrates, tolerating electron-poor and electron-rich arylaldehydes and various Michael acceptors.  相似文献   
6.
7.
The replacement of organometallic rhenium species (e.g., CH(3)ReO(3)) by less expensive and more readily available inorganic rhenium oxides (e.g., Re(2)O(7), ReO(3)(OH), and ReO(3)) can be accomplished using bis(trimethylsilyl) peroxide (BTSP) as oxidant in place of aqueous H(2)O(2). Using a catalytic amount of a proton source, controlled release of hydrogen peroxide helps preserve sensitive peroxorhenium species and enables catalytic turnover to take place. Systematic investigation of the oxorhenium catalyst precursors, substrate scope, and effects of various additives on olefin epoxidation with BTSP are reported in this contribution.  相似文献   
8.
A ruthenium catalyst formed in situ by combining [Ru(p-cymene)Cl2]2 and an amino acid hydroxy-amide was found to catalyze efficiently the asymmetric reduction of aryl alkyl ketones under transfer hydrogenation conditions using ethanol as the hydrogen donor. The secondary alcohol products were obtained in moderate to good yields and with good to excellent enantioselectivity (up to 97% ee).  相似文献   
9.
In this work, we optimize the thermal performance of a double quantum well GaInNAs ridge waveguide laser using an accurate in-house 2D electro-opto-thermal laser simulator. The simulator has shown good agreement with experiments after a detailed calibration procedure. Using calibrated material parameters, we investigate the influence of the cladding doping level on the heat generation within the laser. It is found that due to the competition between Joule heating and free carrier absorption, an optimum cladding doping level exists.  相似文献   
10.
The selective reduction of amides into an intermediate hemiaminal catalyzed by Mo(CO)6 together with the inexpensive and easy to handle TMDS (1,1,3,3‐tetramethyldisiloxane) as reducing agent, followed by subsequent trapping of the hemiaminal with a cyanide source, allows for the straightforward synthesis of α‐amino nitriles. The methodology presented here, displays high levels of chemoselectivity allowing for the reduction of amides in the presence of functional groups such as ketones, imines, aldehydes, and acids, which affords a simple route for the synthesis of α‐amino nitriles with a broad scope of functionalities in high yields. Furthermore, the applicability of this methodology is demonstrated by scale up experiments and by derivatization of the target compounds into synthetically interesting products. The selective cyanation is successfully applied in late stage functionalizations of amide containing drugs and prolinol derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号