首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学   3篇
力学   1篇
数学   4篇
  2023年   1篇
  2020年   3篇
  2017年   1篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 88 毫秒
1
1.
Journal of the Iranian Chemical Society - Herein, we investigated the interaction of cisplatin loaded on GO (GO@CDDP) with two regulatory sequences, BRCA1 and BRCA2, synthesized from ssDNA based on...  相似文献   
2.
The main objective of the current work is to introduce a new conceptual linearization strategy to improve the performance of a primitive shock‐capturing pressure‐based finite‐volume method. To avoid a spurious oscillatory solution in the chosen collocated grids, both the primitive and extended methods utilize two convecting and convected momentum expressions at each cell face. The expressions are obtained via a physical‐based discretization of two inclusive statements, which are constructed via a novel incorporation of the continuity and momentum governing equations. These two expressions in turn provide a strong coupling among the Euler conservative statements. Contrary to the primitive work, the linearization in the current work respects the definitions and essence of physics behind deriving the Euler governing equations. The accuracy and efficiency of the new formulation are then investigated by solving the shock tube as a problem with moving normal and expansion waves and the converging‐diverging nozzle as a problem with strong stationary normal shock. The results show that there is good improvement in performance of the primitive pressure‐based shock‐capturing method while its superior accuracy is not deteriorated at all. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   
3.
ABSTRACT

6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.  相似文献   
4.
Given a graph with costs on the edges, the power of a node is the maximum cost of an edge leaving it, and the power of the graph is the sum of the powers of the nodes of this graph. Motivated by applications in wireless multi-hop networks, we consider four fundamental problems under the power minimization criteria: the Min-Power b-Edge-Cover problem (MPb-EC) where the goal is to find a min-power subgraph so that the degree of every node v is at least some given integer b(v), the Min-Power k-node Connected Spanning Subgraph problem (MPk-CSS), Min-Power k-edge Connected Spanning Subgraph problem (MPk-CSS), and finally the Min-Power k-Edge-Disjoint Paths problem in directed graphs (MPk-EDP). We give an O(log4 n)-approximation algorithm for MPb-EC. This gives an O(log4 n)-approximation algorithm for MPk-CSS for most values of k, improving the best previously known O(k)-approximation guarantee. In contrast, we obtain an approximation algorithm for ECSS, and for its variant in directed graphs (i.e., MPk-EDP), we establish the following inapproximability threshold: MPk-EDP cannot be approximated within O(2log1-ε n) for any fixed ε > 0, unless NP-hard problems can be solved in quasi-polynomial time. This paper was done when V. S. Mirrokni was at Computer Science and Artificial Intelligence Laboratory, MIT.  相似文献   
5.
Carbon dots (CDs) are a new type of nanomaterials of the carbon family with unique characteristics, such as their small size (e.g., <10 nm), high water solubility, low toxicity, and high metal affinity. Modification of CDs by Nitrogen functional groups (N-CDs) enhances their metal adsorption capacity. This study investigated the influences of pH (4, 6, and 9), ionic strength (1, 50, and 100 mM), and cation valency (Na+ and Ca2+) on the competitive adsorption of Pb to quartz and N-CD surfaces, the transport and retention of N-CDs in saturated porous media, and the capacity of N-CDs to mobilize pre-adsorbed Pb in quartz columns. Pb adsorption was higher on N-CDs than on quartz surfaces and decreased with increases in ionic strength (IS) and divalent cations (Ca2+) concentration. N-CD mobility in quartz columns was highest at pH of 9- and 1-mM monovalent cations (Na+) and decreased with decreases in pH and increases in ionic strength and ion valency. N-CDs mobilized pre-adsorbed Pb from quartz due to the higher adsorption affinity of Pb to N-CD than to quartz surfaces. These findings provide valuable insights into the transport, retention, and risk assessment of lead in the presence of carbon-based engineered nanoparticles.  相似文献   
6.
Thermoplastic polyurethanes (TPUs) are among the most versatile engineering polymers. The presence of hard and soft segments on their backbone and specific hydrogen bond interactions between the hard segments, provide TPUs with outstanding engineering properties while rendering them as very complex systems to study. Knowledge of morphology–property relationship is essential for TPUs since their thermal and mechanical behavior are directly dictated by their complicated morphology. In this research, TPU morphological features related to the hard segment content (HSC) were explored in tandem with system macroscopic properties. It was observed that TPUs display multiscale phase separated morphology with specific morphological features dependent on the HSC. At a certain critical HSC, an interconnected network of hard segments was formed which resulted in significant changes in TPU properties. This was explained in analogy with percolation phenomena in filler reinforced systems and considering the hard segments as reinforcing agent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1553–1564  相似文献   
7.
Grimmer  Benjamin  Lu  Haihao  Worah  Pratik  Mirrokni  Vahab 《Mathematical Programming》2023,201(1-2):373-407
Mathematical Programming - Minimax optimization has become a central tool in machine learning with applications in robust optimization, reinforcement learning, GANs, etc. These applications are...  相似文献   
8.
The wide spreading of utilizing of smoothed particle hydrodynamics (SPH) for numerical studies of the complex and high rate deformations of continuums, led the current study to gain a more reliable simulation by employing a modified compressible smoothed particle hydrodynamics (MCSPH) algorithm which could be a more accurate and stable technique in high tension regions, in despite of incompressible standard SPH. The main feature of the modified compressible SPH algorithm relies on a three steps solution procedure to calculate the pressure gradient, the deviatoric stress tensor, and the body forces separately. This algorithm is free of any artificial viscosity in its formulations, as well as welcoming to compressible effects which permits the pressure shock waves in high rate plastic deformation. To examine the accuracy of the algorithm, a benchmark problem of colliding rubber cylinders was simulated first and then a high velocity perforation process of an aluminum beam struck by a rigid projectile was simulated in various projectile speeds, and the failure response of the beam in each case was accompanied by crack propagation process. The prominent capability of the utilized MCSPH can be more illustrated when it was used in simulation of thickness crack propagation a tiny crack paths and defragmentation which can be encountered as a not easy numerical case study. The adequate assurance has been more fortified when the results were compared to those reported from a Finite Element method study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号