首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   5篇
化学   22篇
晶体学   1篇
力学   8篇
数学   4篇
物理学   9篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1979年   1篇
排序方式: 共有44条查询结果,搜索用时 46 毫秒
1.
The development of high-performance inorganic solid electrolytes is central to achieving high-energy- density solid-state batteries. Whereas these solid-state materials are often prepared via classic solid-state syntheses, recent efforts in the community have shown that mechanochemical reactions, solution syntheses, microwave syntheses, and various post-synthetic heat treatment routines can drastically affect the structure and microstructure, and with it, the transport properties of the materials. On the one hand, these are important considerations for the upscaling of a materials processing route for industrial applications and industrial production. On the other hand, it shows that the influence of the different syntheses on the materials'' properties is neither well understood fundamentally nor broadly internalized well. Here we aim to review the recent efforts on understanding the influence of the synthetic procedure on the synthesis – (micro)structure – transport correlations in superionic conductors. Our aim is to provide the field of solid-state research a direction for future efforts to better understand current materials properties based on synthetic routes, rather than having an overly simplistic idea of any given composition having an intrinsic conductivity. We hope this review will shed light on the underestimated influence of synthesis on the transport properties of solid electrolytes toward the design of syntheses of future solid electrolytes and help guide industrial efforts of known materials.

Influence of synthesis and processing on the nature of ultimate product and the ionic transport properties of superionic conductors.  相似文献   
2.
This paper develops methods for interface‐capturing in multiphase flows. The main novelties of these methods are as follows: (a) multi‐component modelling that embeds interface structures into the continuity equation; (b) a new family of triangle/tetrahedron finite elements, in particular, the P1DG‐P2(linear discontinuous between elements velocity and quadratic continuous pressure); (c) an interface‐capturing scheme based on compressive control volume advection methods and high‐order finite element interpolation methods; (d) a time stepping method that allows use of relatively large time step sizes; and (e) application of anisotropic mesh adaptivity to focus the numerical resolution around the interfaces and other areas of important dynamics. This modelling approach is applied to a series of pure advection problems with interfaces as well as to the simulation of the standard computational fluid dynamics benchmark test cases of a collapsing water column under gravitational forces (in two and three dimensions) and sloshing water in a tank. Two more test cases are undertaken in order to demonstrate the many‐material and compressibility modelling capabilities of the approach. Numerical simulations are performed on coarse unstructured meshes to demonstrate the potential of the methods described here to capture complex dynamics in multiphase flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - Nanofluids have recently attracted attention of many researchers due to their growing potential applications in heat transfer devices. They possess...  相似文献   
4.
Flavonoids are a large group of plant secondary metabolites with a variety of biological properties and are therefore of interest to many scientists, as they can lead to industrially interesting intermediates. The anaerobic gut bacterium Eubacterium ramulus can catabolize flavonoids, but until now, the pathway has not been experimentally confirmed. In the present work, a chalcone isomerase (CHI) and an enoate reductase (ERED) could be identified through whole genome sequencing and gene motif search. These two enzymes were successfully cloned and expressed in Escherichia coli in their active form, even under aerobic conditions. The catabolic pathway of E. ramulus was confirmed by biotransformations of flavanones into dihydrochalcones. The engineered E. coli strain that expresses both enzymes was used for the conversion of several flavanones, underlining the applicability of this biocatalytic cascade reaction.  相似文献   
5.
A novel control volume finite element method with adaptive anisotropic unstructured meshes is presented for three-dimensional three-phase flows with interfacial tension. The numerical framework consists of a mixed control volume and finite element formulation with a new P1DG-P2 elements (linear discontinuous velocity between elements and quadratic continuous pressure between elements). A “volume of fluid” type method is used for the interface capturing, which is based on compressive control volume advection and second-order finite element methods. A force-balanced continuum surface force model is employed for the interfacial tension on unstructured meshes. The interfacial tension coefficient decomposition method is also used to deal with interfacial tension pairings between different phases. Numerical examples of benchmark tests and the dynamics of three-dimensional three-phase rising bubble, and droplet impact are presented. The results are compared with the analytical solutions and previously published experimental data, demonstrating the capability of the present method.  相似文献   
6.
The toxic properties of arsenic are well known. Honey has been widely used for monitoring this element. The present work reports a novel method for the determination of arsenic in honey, bees, pollen, and propolis, based on the coupling of microwave digestion and hydride generation. Method development included the quantitative reduction of arsenic(V) to arsenic(III), the acid used for dilution, and the complete removal of the gases following digestion. The method performance was satisfactory with recoveries between 83% and 111% and corresponding relative standard deviations between 3.1% and 24%. Among the 32 samples of honey, propolis, pollen, and honey bees analyzed, arsenic was detected in four out of six propolis samples at the method limit of detection (0.4?µg?g?1). The results indicate that propolis may be an efficient indicator for arsenic.  相似文献   
7.
Two-dimensional, steady flow of a viscoelastic film over a periodic topography under the action of a body force is studied. The exponential Phan-Thien and Tanner (ePTT) constitutive model is used. The conservation equations are solved via the usual mixed finite element method combined with a quasi-elliptic grid generation scheme in order to capture the large deformations of the free surface. The constitutive equation is weighted using the SUPG method and solved via the polymeric stress splitting EVSS-G technique. First, the code is validated by verifying that in isolated topographies the periodicity conditions result in fully developed viscoelastic film flow at the inflow/outflow boundaries and that its predictions for Newtonian fluids over 2D topography under creeping flow conditions coincide with those of previous works. Since the lubrication approximation is not invoked here, the topographical features can have wall segments that form any angle with the main flow, but only slight smoothing of the convex corners assists in reducing the stress singularity there. Thus, steady-state solutions are computed accurately up to high Deborah numbers, resulting in large deformations of the free surface. The magnitude of the capillary ridge in the film before the entrance to a step down of the substrate and of the capillary depression before a step up is increased as De increases up to ~0.7 due to increased fluid elasticity. Above this value they decrease, because increasing De increases also the shear and elongational thinning, which eventually affect them more. Increasing the ratio of solvent to polymer viscosities, β, the elongational parameter, ? and the molecular slip parameter, ξ, monotonically increases their magnitudes and especially that of the capillary ridge, but the mechanisms leading to these changes are different as explained in the text.  相似文献   
8.
We address the problem of characterizing polygonal shapes that can be reconstructed from a class of scanners that have asymmetric resolution. We approach this problem using the methodology of non-interactive probing.

Laser raster scanners provide very high precision along the direction of a scan, but it is not practical to place scans very close to each other. A system capable of generating an omni-directional scan pattern can make a series of directional measurements sufficient to permit the reconstruction of a scanned polygon based on the position of edge crossings and the path of the scanning beam between edge crossings. We provide a procedure to reconstruct a polygon from such a data set, as well as a characterization of the shapes that can be reconstructed given a particular scan density. Our system applies to both concave and convex polygons, as well as to polygons containing holes.  相似文献   

9.
The InAlAs/InGaAs/InP high electron mobility transistor (HEMT) lattice matched to InP offers excellent high frequency, low noise operation for MMICs and low-noise amplifiers. The InP channel in the InP/InAlAs HEMT offers the advantages of improved high field velocity and higher breakdown voltages (the potential for higher power applications) over InGaAs channel HEMTs. InAlAs has been grown for the first time by CBE using TMAA producing InGaAs/InAlAs and InP/InAlAs HEMTs. Sub-micron InGaAs/InAlAs HEMTs with planar Si doping have been fabricated with ft values of 150 GHz and fmax values of 160 GHz. This device showed excellent pinch-off charateristics, with a maximum transconductance of 890 mS/mm. The planar doped InGaAs channel HEMT had a higher ft than a similar uniformly doped device. However, the non-optimized structure of the planar doped device resulted in a large output conductance of 120 mS/mm, limiting fmax for that device. A sub-micron InP channel device was grown with a quantum well channel and double-sided planar Si doping. A sheet charge density of 4.4×1012 cm-2 and associated room temperature mobility of 2800 cm2/V·s were achieved; however, the saturation current was low. The most likely causes for this are diffusion of the planar doping beneath the channel and the poor quality of the InP on InAlAs interface at the bottom of the quantum well channel.  相似文献   
10.
The one-dimensional, gravity-driven film flow of a linear (l) or exponential (e) Phan-Thien and Tanner (PTT) liquid, flowing either on the outer or on the inner surface of a vertical cylinder or over a planar wall, is analyzed. Numerical solution of the governing equations is generally possible. Analytical solutions are derived only for: (1) l-PTT model in cylindrical and planar geometries in the absence of solvent, b o [(h)\tilde]s/([(h)\tilde]s +[(h)\tilde]p)=0\beta\equiv {\tilde{\eta}_s}/\left({\tilde{\eta}_s +\tilde{\eta}_p}\right)=0, where [(h)\tilde]p\widetilde{\eta}_p and [(h)\tilde]s\widetilde{\eta}_s are the zero-shear polymer and solvent viscosities, respectively, and the affinity parameter set at ξ = 0; (2) l-PTT or e-PTT model in a planar geometry when β = 0 and x 1 0\xi \ne 0; (3) e-PTT model in planar geometry when β = 0 and ξ = 0. The effect of fluid properties, cylinder radius, [(R)\tilde]\tilde{R}, and flow rate on the velocity profile, the stress components, and the film thickness, [(H)\tilde]\tilde{H}, is determined. On the other hand, the relevant dimensionless numbers, which are the Deborah, De=[(l)\tilde][(U)\tilde]/[(H)\tilde]De={\tilde{\lambda}\tilde{U}}/{\tilde{H}}, and Stokes, St=[(r)\tilde][(g)\tilde][(H)\tilde]2/([(h)\tilde]p +[(h)\tilde]s )[(U)\tilde]St=\tilde{\rho}\tilde{g}\tilde{\rm H}^{2}/\left({\tilde{\eta}_p +\tilde{\eta}_s} \right)\tilde{U}, numbers, depend on [(H)\tilde]\tilde{H} and the average film velocity, [(U)\tilde]\widetilde{U}. This makes necessary a trial and error procedure to obtain [(H)\tilde]\tilde{H} a posteriori. We find that increasing De, ξ, or the extensibility parameter ε increases shear thinning resulting in a smaller St. The Stokes number decreases as [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to zero for a film on the outer cylindrical surface, while it asymptotes to very large values when [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to unity for a film on the inner surface. When x 1 0\xi \ne 0, an upper limit in De exists above which a solution cannot be computed. This critical value increases with ε and decreases with ξ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号