首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   13篇
数学   4篇
物理学   2篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2005年   2篇
  2002年   1篇
  2000年   1篇
  1996年   3篇
  1994年   1篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
2.
The electrostatic assembly of nanocomposite thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes, glucose oxidase (GOX), lactate oxidase (LOX) and pyruvate oxidase (PYX), was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic attachment of a cationic RP, poly(vinylpyridine Os(bis-bipyridine)2Cl-co-allylamine) (PVP-Os-AA), and anionic oxidoreductase enzymes. Surface plasmon resonance (SPR) spectroscopy, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS) and electrochemistry were employed to characterize the assembly of these nanocomposite films. The surface concentration of GOX was found to be 2.4 ng/mm2 for the first enzyme layer and 1.96 ng/mm2 for the second enzyme layer, while values of 10.7 and 1.3 ng/mm2 were obtained for PYX and LOX, respectively. The apparent affinity constant for GOX adsorption was found to be 8×107 M−1. FT-IR-ERS was used to verify the incorporation of GOX and its conformational stability inside of these nanocomposite thin films. An SPR instrument with a flow-through cell was modified by additions of Ag/AgCl reference and Pt counter electrodes, with the gold-coated SPR surface film serving as the working electrode. This enabled real-time observation of the assembly of sensing components and immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. A glucose-dependant amperometric response with sensitivity of 0.197 μA/cm2/mM for a linear range of 1-10 mM of glucose was obtained. The SPR and FT-IR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite RP-GOX structure when stored in aqueous environment occurred over the period of 3 weeks, suggesting that decreasing substrate sensitivity with time was due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.  相似文献   
3.
Multifunctional coatings were produced by the layer by layer assembly of single-walled carbon nanotubes (SWNT) dispersed in DNA and lysozyme (LSZ) on an insulating glass substrate. The electrochemical properties of these mechanically robust biocoatings were characterized for the first time using scanning electrochemical microscopy (SECM) and impedance spectroscopy (IS). SECM surface analysis demonstrated an increase in tip current with a corresponding increase in the number of oppositely polarized interlaced layers, indicating that subsequent layers were not electrically insulated from each other and a direct correlation exists between SECM feedback response and the number of layers. The rate of charge transport was also dependent on the chemical composition/polarity of the outermost surface layer. Coatings terminating in SWNT-DNA resulted in more positive feedback than those terminating in SWNT-LSZ. IS analysis demonstrated that the SWNT-DNA had a low charge transfer resistance in comparison with SWNT-LSZ, which is consistent with the results obtained by SECM. These results enable enhanced fundamental understanding and prediction of the electrical properties of SWNT-biopolymer layers with controlled interlaced polarities and orientation. Furthermore, these finding highlight the potential for SWNT-biopolymers in electronic and sensing applications.  相似文献   
4.
Monolayer cultures of bovine and human adrenocortical cells have been used to study regulation of growth and function. Homogeneous bovine adrenocortical cells exhibit a finite life span of approximately 60 generations in culture. Full maintenance of differentiated function (steroid hormone synthesis) requires an inducer such as ACTH and antioxidizing conditions. Full induction of differentiated function occurs only when cellular hypertrophy is stimulated by growth factors such as fibroblast growth factor and serum. ACTH and other agents that increase cellular cAMP inhibit replication but do not block growth factor-induced cellular hypertrophy. ACTH and growth factors together result in a hypertrophied, hyperfunctional cell. Replication ensues only when desensitization to the growth inhibitory effects of ACTH occurs. Cultures of the definitive and fetal zones of the human fetal adrenal cortex synthesize the steroids characteristic of the two zones in vivo. ACTH stimulates production of dehydroepiandrosterone (DHA), the major steroid product of the fetal zone, and of cortisol, the characteristic steroid product of the definitive zone. Prolonged ACTH treatment of fetal zone cultures results in a preferential increase in cortisol production so that the pattern of steroid synthesis becomes that of the definitive zone. The preferential increase in cortisol production by fetal Zone cultures results from induction of 3 beta-hydroxysteroid dehydrogenase, delta 4,5 isomerase activity, which is limiting in fetal zone cells. ACTH thus causes a phenotypic change in fetal zone cells to that of definitive zone cells. In both bovine and human adrenocortical cells, the principal effect of ACTH is to induce full expression of differentiated function. This occurs only under conditions where growth substances and nutrients permit full amplification.  相似文献   
5.
6.
A microbial sensor for concentration measurement of phenol in aqueous solutions has been developed. Phenol-utilizing cellsPseudomonas putida GFS-8 immobilized in poly(vinyl)alcohol cryogel were used as a biological transducer. Relationships between phenol concentration in the activating medium and endogenic cell respiration have been established. Cell respiration and phenol concentration in the assay solution positively correlated at a phenol concentration range of 0.1–2.0 mg/L and were linearly dependent in the range of 0.1–1.0 mg/L. A Clark membrane electrode was the physiochemical transducer. The assay may be completed within 5 min. The cells oxidize phenol, pyrocatechol, mesityl oxide, aniline, and do not react with a number of xenobiotics, sugars, and alcohol. With the exception of aniline, most components found in waste waters from phenol production affect neither the assay process nor the ability of these cells to use phenol as exogenic respiratory substrate. The immobilized cells retained their ability to utilize phenol as an exogenic respiratory substrate for up to 1 mo.  相似文献   
7.
We consider a fluid queueing system with infinite storage capacity and constant output rate offered a superposition ofN identical On/Off sources, where the ratio of input to output rate is small. The On and/or Off periods have heavy tailed distributions with infinite variance, giving rise to Long Range Dependence in the arrival process. In the limit of a large number of sources and high load, it is shown that the tail of the stationary queue content distribution is Weibullian, implying much larger queue contents than in the classical case of exponential tails. Noting that similar results were recently found by I. Norros for a storage system input by a Fractional Brownian Motion, we then show how the two models are related, thus providing a further physical motivation for the Fractional Brownian Motion model.  相似文献   
8.
This paper describes a new method for evaluating the queue length distribution in an ATM multiplexer assuming the cell arrival process can be assimilated to a variable rate fluid input. The method is based on a result due initially to Bene allowing the analysis of queues with general input. Its extension to fluid input systems is considered here in the case of a superposition of on/off sources. We derive an upper bound on the complementary queue length distribution. The method is most easily applied in the case of Poisson burst arrivals (infinite sources model). In this case, we derive analytic expressions for the tail of the queue length distribution. A corrective factor is deduced to convert the upper bounds to good approximations. Numerical results justify the accuracy of the method and demonstrate the impact of certain traffic characteristics on queue performance.  相似文献   
9.
We analyze the so-called shortest queue first (SQF) queueing discipline whereby a unique server addresses queues in parallel by serving at any time, the queue with the smallest workload. Considering a stationary system composed of two parallel queues and assuming Poisson arrivals and general service time distributions, we first establish the functional equations satisfied by the Laplace transforms of the workloads in each queue. We further specialize these equations to the so-called “symmetric case,” with same arrival rates and identical exponential service time distributions at each queue; we then obtain a functional equation $$\begin{aligned} M(z) = q(z) \cdot M \circ h(z) + L(z) \end{aligned}$$ for unknown function M, where given functions \(q, L\) , and \(h\) are related to one branch of a cubic polynomial equation. We study the analyticity domain of function M and express it by a series expansion involving all iterates of function \(h\) . This allows us to determine empty queue probabilities along with the tail of the workload distribution in each queue. This tail appears to be identical to that of the head-of-line preemptive priority system, which is the key feature desired for the SQF discipline.  相似文献   
10.
The applications of biosensors range from environmental testing and biowarfare agent detection to clinical testing and cell analysis. In recent years, biosensors have become increasingly prevalent in clinical testing and point-of-care testing. This is driven in part by the desire to decrease the cost of health care, to shift some of the analytical tests from centralized facilities to "frontline" physicians and nurses, and to obtain more precise information more quickly about the health status of a patient. This article gives an overview of recent advances in the field of biosensors, focusing on biosensors based on enzymes, aptamers, antibodies, and phages. In addition, this article attempts to describe efforts to apply these biosensors to clinical testing and cell analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号