首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
数学   11篇
  2022年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Traditional integer‐order partial differential equation based image denoising approach can easily lead edge and complex texture detail blur, thus its denoising effect for texture image is always not well. To solve the problem, we propose to implement a fractional partial differential equation (FPDE) based denoising model for texture image by applying a novel mathematical method—fractional calculus to image processing from the view of system evolution. Previous studies show that fractional calculus has some unique properties that it can nonlinearly enhance complex texture detail in digital image processing, which is obvious different with integer‐order differential calculus. The goal of the modeling is to overcome the problems of the existed denoising approaches by utilizing the aforementioned properties of fractional differential calculus. Using classic definition and property of fractional differential calculus, we extend integer‐order steepest descent approach to fractional field to implement fractional steepest descent approach. Then, based on the earlier fractional formulas, a FPDE based multiscale denoising model for texture image is proposed and further analyze optimal parameters value for FPDE based denoising model. The experimental results prove that the ability for preserving high‐frequency edge and complex texture information of the proposed fractional denoising model are obviously superior to traditional integral based algorithms, as for texture detail rich images. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
3.
4OR - Home health services arise from the need for hospitals to care for patients and/or dependent persons who, due to special conditions, require hospitalisation and/or care at home. The...  相似文献   
4.
5.
6.
Many real-world optimization problems are dynamic (time dependent) and require an algorithm that is able to track continuously a changing optimum over time. In this paper, we propose a new algorithm for dynamic continuous optimization. The proposed algorithm is based on several coordinated local searches and on the archiving of the optima found by these local searches. This archive is used when the environment changes. The performance of the algorithm is analyzed on the Moving Peaks Benchmark and the Generalized Dynamic Benchmark Generator. Then, a comparison of its performance to the performance of competing dynamic optimization algorithms available in the literature is done. The obtained results show the efficiency of the proposed algorithm.  相似文献   
7.
In this paper, we propose a grayscale image segmentation method based on a multiobjective optimization approach that optimizes two complementary criteria (region and edge based). The region-based fitness used is the improved spatial fuzzy c-means clustering measure that is shown performing better than the standard fuzzy c-means (FCM) measure. The edge-based fitness used is based on the contour statistics and the number of connected components in the image segmentation result. The optimization algorithm used is the multiobjective particle swarm optimization (MOPSO), which is well suited to handle continuous variables problems, the case of FCM clustering. In our case, each particle of the swarm codes the centers of clusters. The result of the multiobjective optimization technique is a set of Pareto-optimal solutions, where each solution represents a segmentation result. Instead of selecting one solution from the Pareto front, we propose a method that combines all solutions to get a better segmentation. The combination method takes place in two steps. The first step is the detection of high-confidence points by exploiting the similarity between the results and the membership degrees. The second step is the classification of the remaining points by using the high-confidence extracted points. The proposed method was evaluated on three types of images: synthetic images, simulated MRI brain images and real-world MRI brain images. This method was compared to the most widely used FCM-based algorithms of the literature. The results demonstrate the effectiveness of the proposed technique.  相似文献   
8.
Genetic algorithms are stochastic search approaches based on randomized operators, such as selection, crossover and mutation, inspired by the natural reproduction and evolution of the living creatures. However, few published works deal with their application to the global optimization of functions depending on continuous variables.A new algorithm called Continuous Genetic Algorithm (CGA) is proposed for the global optimization of multiminima functions. In order to cover a wide domain of possible solutions, our algorithm first takes care over the choice of the initial population. Then it locates the most promising area of the solution space, and continues the search through an intensification inside this area. The selection, the crossover and the mutation are performed by using the decimal code. The efficiency of CGA is tested in detail through a set of benchmark multimodal functions, of which global and local minima are known. CGA is compared to Tabu Search and Simulated Annealing, as alternative algorithms.  相似文献   
9.
Particle swarm optimization (PSO) is characterized by a fast convergence, which can lead the algorithms of this class to stagnate in local optima. In this paper, a variant of the standard PSO algorithm is presented, called PSO-2S, based on several initializations in different zones of the search space, using charged particles. This algorithm uses two kinds of swarms, a main one that gathers the best particles of auxiliary ones, initialized several times. The auxiliary swarms are initialized in different areas, then an electrostatic repulsion heuristic is applied in each area to increase its diversity. We analyse the performance of the proposed approach on a testbed made of unimodal and multimodal test functions with and without coordinate rotation and shift. The Lennard-Jones potential problem is also used. The proposed algorithm is compared to several other PSO algorithms on this benchmark. The obtained results show the efficiency of the proposed algorithm.  相似文献   
10.
When handling combinatorial optimization problems, we try to get the optimal arrangement of discrete entities so that the requirements and the constraints are satisfied. These problems become more and more important in various industrial and academic fields. So, over the past years, several techniques have been proposed to solve them. In this paper, we are interested in the single machine scheduling problem with Sequence-Dependent Setup Times, which can be solved through different approaches. We present a hybrid algorithm which combines Greedy Randomized Adaptive Search Procedure and Differential Evolution for tackling this problem. Our algorithm is tested on benchmark instances from the literature. The computational experiments prove the efficiency of this algorithm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号