首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
数学   17篇
物理学   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2006年   1篇
排序方式: 共有18条查询结果,搜索用时 109 毫秒
1.
Lyu  Pin  Vong  Seakweng 《Numerical Algorithms》2021,87(1):381-408
Numerical Algorithms - In this paper, we study a fast linearized numerical method for solving nonlinear time-fractional diffusion equations. A new weighted method is proposed to construct...  相似文献   
2.
Two fully discrete methods are investigated for simulating the distributed-order sub-diffusion equation in Caputo’s form. The fractional Caputo derivative is approximated by the Caputo’s BDF1 (called L1 early) and BDF2 (or L1-2 when it was first introduced) approximations, which are constructed by piecewise linear and quadratic interpolating polynomials, respectively. It is shown that the first scheme, using the BDF1 formula, possesses the discrete minimum-maximum principle and nonnegativity preservation property such that it is stable and convergent in the maximum norm. The method using the BDF2 formula is shown to be stable and convergent in the discrete H 1 norm by using the discrete energy method. For problems of distributed order within a certain region, the method is also proven to preserve the discrete maximum principle and nonnegativity property. Extensive numerical experiments are provided to show the effectiveness of numerical schemes, and to examine the initial singularity of the solution. The applicability of our numerical algorithms to a problem with solution which lacks the smoothness near the initial time is examined by employing a class of power-type nonuniform meshes.  相似文献   
3.
In this article, we consider two‐dimensional fractional subdiffusion equations with mixed derivatives. A high‐order compact scheme is proposed to solve the problem. We establish a sufficient condition and show that the scheme converges with fourth order in space and second order in time under this condition.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2141–2158, 2017  相似文献   
4.
In this article, a high‐order finite difference scheme for a kind of nonlinear fractional Klein–Gordon equation is derived. The time fractional derivative is described in the Caputo sense. The solvability of the difference system is discussed by the Leray–Schauder fixed point theorem, while the stability and L convergence of the finite difference scheme are proved by the energy method. Numerical examples are provided to demonstrate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 706–722, 2015  相似文献   
5.
In this article, we consider finite difference schemes for two dimensional time fractional diffusion‐wave equations on an annular domain. The problem is formulated in polar coordinates and, therefore, has variable coefficients. A compact alternating direction implicit scheme with accuracy order is derived, where τ, h1, h2 are the temporal and spatial step sizes, respectively. The stability and convergence of the proposed scheme are studied using its matrix form by the energy method. Numerical experiments are presented to support the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1692–1712, 2015  相似文献   
6.
To recover the full accuracy of discretized fractional derivatives, nonuniform mesh technique is a natural and simple approach to efficiently resolve the initial singularities that always appear in the solutions of time-fractional linear and nonlinear differential equations. We first construct a nonuniform L2 approximation for the fractional Caputo's derivative of order 1 < α < 2 and present a global consistency analysis under some reasonable regularity assumptions. The temporal nonuniform L2 formula is then utilized to develop a linearized difference scheme for a time-fractional Benjamin–Bona–Mahony-type equation. The unconditional convergence of our scheme on both uniform and nonuniform (graded) time meshes are proven with respect to the discrete H1-norm. Numerical examples are provided to justify the accuracy.  相似文献   
7.
In this work, an effective and fast finite element numerical method with high-order accuracy is discussed for solving a nonlinear time fractional diffusion equation. A two-level linearized finite element scheme is constructed and a temporal–spatial error splitting argument is established to split the error into two parts, that is, the temporal error and the spatial error. Based on the regularity of the time discrete system, the temporal error estimate is derived. Using the property of the Ritz projection operator, the spatial error is deduced. Unconditional superclose result in H1-norm is obtained, with no additional regularity assumption about the exact solution of the problem considered. Then the global superconvergence error estimate is obtained through the interpolated postprocessing technique. In order to reduce storage and computation time, a fast finite element method evaluation scheme for solving the nonlinear time fractional diffusion equation is developed. To confirm the theoretical error analysis, some numerical results are provided.  相似文献   
8.
We consider difference schemes for nonlinear time fractional Klein-Gordon type equations in this paper. A linearized scheme is proposed to solve the problem. As a result, iterative method need not be employed. One of the main difficulties for the analysis is that certain weight averages of the approximated solutions are considered in the discretization and standard energy estimates cannot be applied directly. By introducing a new grid function, which further approximates the solution, and using ideas in some recent studies, we show that the method converges with second-order accuracy in time.  相似文献   
9.
Zheng  Hua  Vong  Seakweng 《Numerical Algorithms》2021,86(4):1791-1810
Numerical Algorithms - In this paper, for solving horizontal linear complementarity problems, a two-step modulus-based matrix splitting iteration method is established. The convergence analysis of...  相似文献   
10.
Zheng  Hua  Vong  Seakweng 《Numerical Algorithms》2019,82(2):573-592

In this paper, a modified modulus-based matrix splitting iteration method is established for solving a class of implicit complementarity problems. The global convergence conditions are given when the system matrix is a positive definite matrix or an H+-matrix, respectively. In addition, some numerical examples show that the proposed method is efficient.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号